
DOCUMENT RESUME

, ,ED 115-658 IR 002 900

AUTHOR Gerlach, Vernon S.; And Others
TITLE Algorithms in Learning, Teaching, and Instructional

Design. Studies in Systematic Instruction and
Training Technical Report 51201.

INSTITUTION Arizona State Univ., Tempe. Coll. of Education.
SPONS AGENCY Air Force Office of Scientific Research, Arlington,

Va.
PUB DATE Dec 75
NOTE 70p.

EDRS PRICE
DESCRIPTORS

MF-$0.75 HC-$3.32 Plus Postage
*Algorithms; *Instructional Design; Instructional
Systems; Research ProblemS; *State of the Art
Reviews; Teaching Methods

ABSTRACT
An algorithm is defined here as an unambiguous

procedure which will always produce the correct result when applied
0 to any problem of a given class of problems. This paper gives an

extended discussion of the definition of an algorithm. It also
explores in detail the elements of an algorithm, the representation
of algorithms in standard prose, flow charts, coded graphs, linear
representation, list form and decision table form. It develops a
taxonomy of algorithms and discusses at length the uses of algorithms
in instruction and in research and development problems. (JY)

a

Itt*****************4*************************Ic************************
Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Docupent Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *
********************1,**************************************************



41,

Rule Learning and Systematic Instruction in
Undergraduate Pilot Training

Vernon S. Gerlach, Principal Investigator

ALGORITHMS IN LEARNING, TEACHING, AND
INSTRUCTIONAL DESIGN

Vernon B. Gerlach
Robert A. Reiser
Fritz H. Brecke

Technical Report #51201
U S DEPARTMENT OF HEALTH.

EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
OUCEO EXACTLY AS RECFIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED 00 NOT NECESSARILY REPRE
SENTOFFICIAL NATIONAL INSTITUTE OF

EDUCATION POSITION OR POLICY

Research sponsored by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under Grant No. AFOSR 75-2900. The
United States Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright
notation hereon.

College of Education
Arizona State Univeisity

Tempe, Arizona

December, 1975



5

-PERMISSION TO REPRODUCE
THIS COPY-

RIGHTED MATERIAL HAS BEEN GRANTED BY

Vefflet Cierfadkft Cfefe

to4 rSliy Ar12osla-
TO ERIC AND 0110ANIZATIONS OPERATING

UNDER AGREEMENTS
WITH THE NATIONAL IN

STITUTE OF EDUCATION
FURTHER REPRO.

CUCTION OUTSIDE THE
ERIC SYSTEM RE.

QUIRES PERMISSION
OF THE COPYRIGHT

OWNER

Copyright 1975
Arizona State University

All rights reserved

0

e*



Contents

Page
r

I. On the Difference between Magic and Algorithms 1

II. The Definition of Algorithm 3

The Three Attributes 5

Attribute 1 5

Attribute 2 7

--/Attribute 3 7

A,Traditional Definition 9

The Relationship between Resultivity
and Replicability 9

A Revised Definition 10

The Problem Class, the Result Class 0
and the User Class 11

Domain 11

Range 11

User 12

Summary 13

III. The Elements of an Algorithm 15

Introduction 15

Operator 19

Discriminator 19

Syntactic structure 20

Summary 20

IV. The Representation of Algorithms 21

Standard prose 21

Flow charts 22

Coded graphs 23

v

4



vi

Linear representation

List form

Decision table form

.
, Summary

-Page

24

25

26

27

V. Taxonomies of Algorithms 29

VI. The Uses of Algorithms in Instruction 39

Algorithms as Aids to the Learner 39

Algorithms as Aids td the Instructional Designer 41

Algorithms and objectives 41

Entry skills and learning ,41

Prompting 44

Individualized instruction 45

VII. Research. and Development Problems 53

Algorithms for Learning and Teaching 53

Algorithms in Flying Training- 54

Quasi-algorithmic prescriptions
and quasi-algorithms 54

Variables in algorithms 56

Syntactic variables 56

Semantic variables 58

Pragmatic variables 58

Non-textual algorithms 59

Epilogue 61

References 63

Appendix 65

5



1

0., List of Figures.

Figure Page ',

1. Algorithm for Adding Fractions t

2. Euclidean Algorithm (Version 2)

3. Example of an Identification Algorithm in Biology

4

17

30

4. Identification Algorithm after Landa (1974), p. 437 . 32

5. Algorithm for Forming the Possessive of English Nouns . 33

6. Algorithm for Adding Fractions 34

7. Decision Tree for Selecting Evaluation Models 40

8. Algorithm for Adding Fractions (Veision 1) 42

9. Algorithm for Producing a 3x3.Magic Square . . . ..... 46

10. Abbreviated Flow Chart 47

11. A Reminder 48

12. Euclidean Algorithm (Version 1) 49

13. Euclidean Algorithm (Version 2ie' 50

14. Euclidean Algorithm (Version 3) 51

15. The Syntactical StrUcture of the
Euclidean Algorithm (Version 1) 157



3.

Acknowledgments

The authors are indebted to Dr/s. Jathes Eubatiks and Robert Haygood
and to Maryann Barron for careful,reading and critiquing of the paper
from first to final drafts; to Diane Stone for handling the typing,
editing, reproduction, and a myriad of other details with amazing cheer-
fulness and dispatch.

To each of them--thank you

Above all, we take this occasion to thank Dr. William J. Burke,
Arizona State's Vice-president for Research from 1962-1975, for his
dedication And devotion to the cause of university research and for
his encouragement and support during this and all our previous research
efforts.

Vernon S. Gerlach
Robert A. Reiser
Fritz H. Brecke

t



,43

I. On the Difference-between Magic and Algorithms

"One-day Houdini attended the public demonstratiOn of a French-made
flying aachine, a Voisin, a beautiful biplane with boxed wings,'a box
rudder and three delicately strutted bitycle wheels. The aviator flew
it over a race track and landed on the infield, and the nextday his
feat was described in the newspapers. Houdini moved decisively. :within

a week he was the owner of a new Voisin biplane. It had cost him five
thousand dollars. It came complete with a French mechanic who gave in-
struction in the art'of flying. He secured the use of An army parade
grounds outside of Hamburg. In all the countries in which he played he
always got on well with .the military. Soldiers everywhere were fans of

his. Each morning at dawn he would drive to the parade grounds and sit
at the controls of the Voisin while the mechanic lectured him on-
the function and purpose of the levers and pedals within reach of the
pilot. The plane was directed by means of a large steering wheel
mounted in the vertical position and attached by a shaft to the front
rudder. Thepilot sat. behind the front rudder on a little seat between
the two wings. Behind him was the engine, and behind the engine was the
propeller. The Voisin was made of wood. The wings were ebvered in
fabric stretched,taut and sized with varnish. The struts connecting the
double wings were paneled with the same material The Voisin looked
like a box kite. Houdini had his name painted in block letters on the
,outside panels of the wings and on the rear elevatord. He could hardly
wait for his fiist.flight. the patient mechanic drilled him in thevari-
ous operations required to get the machine aloft, maintain it in flight
and land it Eiiery night Houdipi did his act and every morning at dawn
he went out for his lessons. Finally one morning when the red sky was
clear andithe mechanic judged the wind cuuditions to be right, they
pushed thdimachine out of its shed and faced it into.the breeze.
Houdini climbed into the pilot's seat, turned his cap backwards and
pulled it down tight. He clutched the wheel. His eyes narrowed in con-
centration, he set his jaw firmly and he turned his head and nodded to
the mechanic, who spun the wood propeller. The engine fired. It was an

Enfield 80-horsepower job, supposedly better than the one the Wrights
themselves were using. Hardly daring to breathe, Houdini throtted the
engine, idled it, throttled it again. Finally he held up his thumb.
The mechanic ducked under the wings and pulled the Wheel chocks. The

craft slowly moved forward. Houdini breathed faster and faster as the
Voisin picked up speed. Soon it was bumping along the ground and he
could feel the sensitive wings take on an intelligence of their own, as
if a disembodied presence had joined the enterprise. The machine lifted

off the ground. He thought he was dreaming. He had to Willfully re-
strain his emotions, commanding himself sternly to keep the wings level,
to keep the throttle continuously in touch with the speed of the flight.

He was flying! His feet worked the pedals, he clasped,the control wheel
and gently the rudder in front of him tilted down and the machine
climbed the sky. He dared to look down: the earth was fifty feet below

him. He no longer heard the ratcheting engine behind his ear. He felt
the wind in his face and discovered he was shouting., The guy wires
seemed to sing, the great wings above and below him nodded and dipped
and played in the air with their incredibly gentle intelligence. The

bicycle wheels spun slowly, idly in the breeze. He was flying over a

8

o

na

4



c,

2

40

stand of trees. Gaining confidence he put the craft intdkn'difficult
-maneuver, 'a bank. The Voisin described a wide circle around the parade
,grounds. Then he could see the mechanic standilig in the distance, by ''the
shed, raising both arms in salute. Cooly, Houdini leveled the wings,
slipped under his breeze and began bis descent. The moment the wheels
touched down, the crudeness of the impact offended him. And when the
machine rolled-to a stop he wanted only to be airborne again." (Doctordwi
.1975, pp. 84.-86.)

'1 N.
. .

Either Houdini was 1,magician of considerably greater magnitude than

.
any of us has.heretofore

.

suspected, or he used an extremely powerful
algorithm.1 .

.

ALGORITI-IM ?

WHAT'S AN
ALORITI:1M?

Odd

.

en' 6'14/ \/

4

1This is not to deny the possible role of other extremely important
variables, such as luck.

6.

ti



I.

G

6 a.
II.. The Definition of Algorithm .

1A- .
. A

Alstudent pilot is about to make his first attempt at flying a
. Vertical S-A maneuver in a flight simulator. Both his instructor pilot

andhis manuals have t ld him that in order to make the transition from'
:

straight and leiml to s dy state climb.he should:. .
...

.

1. "Aiply power at---e lsnooth, slow; and steady rate.

:2. As soonas'02 air speed starts to increase, increase the pitch

ts
sufficientb to maintain k60 KIAS, .

3: Keep increasing both pitch and power while maintaining 160 KIAS
until attitude indicator is +14 bar width.

4. The tachometer should show'94 + 1%.

5. The vertical velocity indicator should be at or approaching
1000T/minute.-

6. Fine tune the vertical velocity to 1000T/minute by making very
small and, smooth corrections.

s

7. Trim for hands-off condition as soon as possible.,,

The student pilot has been taught these verbal statements; now he is
abott-to apply them, as'a procedure.

.
.

In the context of flying training,'procedure conveys information
about such things as flight parameters -- numerical values such as the,
power;, airspeed, "vertical velocity, attitude, and heading for a giVen.
maneuver. Procedure tells the student pilot what to do. Sometimes pro-.

cedure is recorded in books, films, tapes; sometimes the-student pilot
m t learn procedure on his own. Procedure is standardized. Every
stu lot is required to perform the maneuver according to a specific
procedure (or, at least, actordingto one of a usually very small,number
of acceptable procedures). But whatever else procedure may be or what-
ever form it. may take, this attribute remains invariate: procedure is an

ordered list of instructions or rules.2

. Elementary and secondary schoorpupils must learn an enormous number
of procedures. Consider the fifth Rader as he learns to add fractions.
He is taught to-use the flow chart in Figure 1.

His first problem is 1/3 + 1/3. He follows the path a A B: Yes,
the denominators are the same (a). The sum of the numerators is 2 (A).
This sum ism laced over the common dvpifinator, 3 (B). The result is

2The invariants of rules include the following: thel are (1)

directed to someone and (2) specify with varying degrees of precision how
a certain process is to be carried out.

r
10 .



a; Identical deno tors?

4

II: Is one denomi-
1tor a multiple
fLthe other?

: Factor larger denomi-
nator into two factors
with smaller denomi-
nator as 'one factor. .

Multiply the numera-
- for and denominator

of the other fraction
by this factor.

Yes

No

c: Ar:le denomi-
t

mators mniltiples
of a common factor
other than 1?

,F: Form the common denomi-
nator By multipying 4

the common factor by
the two unique factors.

G: Multiply each numera-
tor by unique factor
of the denominator of
the other fraction.

A: Add numerators.

NI/

B: Write sum' over com-
mon denominator.

No

H: Form common denomi -
1 nator by multiplying

the two individual
denominators.

Multiply each nume-
rator by denominator
of other fraction.

Figure 1. Algorithm for Adding Fractions



top
5

2/3. Check it for yourself by following path a A B. Several days later
he has advanced to a much more difficult problem: + 2/3. He
follows the pathabcHIAB. Follow the flow chart: (a) the denomi-
nators 3 arid 16 are not identical; (b) 16 is not a multiple of 3; (c) 3
and 16 are not multiples of A common factor other than 1; (H) the common
denominator is 48 (the product of 16 and 3); (I) 3 x 3 = 9 and 2 x 16 =
32; (A) 9 + 32 = 41; (B) 41/48.

What do the student pilot and the fifth grader have in common? Both
are following a procedure. The procedure which the fifth grader uses is
an algorithm--represented by means of a flow chart. At this point we
want to establish only onepoint: the type of procedure describing how
to add fractions is an algorithm. All algorithms area subset of the set
procedure. Every algorithm is an ordered list of instructions or rules,
but not.every list of instructions or rules is an algorithm.

The procedure for executing the Vertical S-A is not an algorithm;
the procedure for adding two fractions is. Why do we make this distinc-

t tion? Because the procedure for adding fractions possesses three
attributes--attributes which every algorithm must possess--but the proce-
dure for flying the Vertical S-A does not. Let us discuss each of these
attributes in detail.

The Three Attributes

Attribute 1. Look at the procedure for adding fractions. What
problems can be solved:by means of this procedure? Is it possible to use
the algorithm for any examples other than 1/3 + 1/3 and 3/16 + 2/3?
obviously, yes! It is this characteristic which constitutes the first
defining-Attribute of an algorithm: an algorithm must possess genera-
lity; it must bp applicable to a class of problems, not merely to a
single problem.

The procedure for executing a Vertical S-A does possess generality,
but the class of problems to which it is applicable is quite restricted.
The procedure cannot be appliedto any Vertical S-A maneuver, but can be
applide only to Vertical S-A maneuvers in which airspeed as 160 KIAS and
altitude range is 1000 feet. The procedure, as definted by the seven
elelAents on p. 3, is not generalizable to Vertical S-A maneuvers which
'involve an airspeed other than 160 KIAS.or an altitude range qther than
1000 feet.

Generally speaking, the literature on algorithms includeslaierality
as one of the defining attributes of the concept; sometimes this attri-
bute is mentioned quite explicitly, sometimes only implicitly. Writers
who use the term algorithm with precision are referring to a procedure
which may be" applied to any problem of a certain cl'ss. Trakhtenbrodt
(1963) defines the term thus: ?By an algorithm la meant a list of
Instructions specifying a segue ce of operationsrwhich will give the
answer to an_problem of a given type [italics added]." Markov (1961) is
more general and defines an algorithm as "an exact prescription defining
a computational process that leads from various initial data 'italics

added) to a described result.", Even thbugh these formulations are

' 12



6

inadequate as definitions, they do convey the concept of a general proce-
dure for the solution of any problem of a class of problems. Knuth (1968)
describes the generality characteristic implicitly when he states that
the inputs for an algorithm must be members of a specified set. Landa
(1974) uses a definition which includes the attribute generality:

4

By algorithm is jisually meant a precise, generally compre-
hensible prescription for carrying out a defined (in each
particular case) sequence of-elementary operations (from
some system of such Operations) in order to solve any prob-
lems belonging to a certain class (or type). (p. Il)

Bellman, Cooke, and Lockett (1970) agree: ". . . an algorithm .
must lead to a solution of 'any problem of a given kind,' rather than to
one particular problem only" (p. 57). Trakhtenbrodt (1963) uses the
lable "generality".as follows:

The generality of algorithms

An algorithm is a single list of instructions defining
a calculation which may be carried out on any initial data
and which in each case gives the correct result. In other
words, an algorithm' tells how to solve not just one particu-
lar problem, but a whole class of similar problems. (p. 7)

Horabin And Lewis (1974) have shown that the generality of an algo-
rithm is not dependent on the nature of the subject matter dealt with.
There are explicated natural laws in such fields as mechanics, elec-
tronics, thermodynamics, or logic. Certain courses deal with the teach-
ing of rules for dealing with systems based on explicated natural laws.
Such rules presented in algorithmic form are called grounded rules and
the algorithms are called grounded algorithms. In contrast, agreemental
rules (Horabin and Lewis, 1974) deal with such matters as tax codes,
rules for games and sports, insurance claims, or loan applications. An
algorithm for completing a tax form, for example, is not based on any
natural rule but on rules formulated by agreement; such an algorithm is
.called an agreemental algorithm.

- The algorithm for adding fractions'is grounded. It is based on
natural rules for. manipulating symbols (in this case, numeric symbols).
The rules for adding fractions are not a matter of agreement from time to
time; they are "changeless," external, inherent in the arithmetic system.

It is less impOrtant.to discriminate between grounded and agree-.

mentar algorithms,ethan it is to remembef that each type must possess
generality if it IS a true algorithm. An algorithm for completing Tax
Form 1040 is agreemental; an algorithm for computing the rate of descent

of- fallingliadie-a- 1B-grounda Irolforer, the -former is an algorithm. only
it enables the user to complete the forms correctly for the many dif-

/ferentferent instances of income,- deductions, and tax liabilities which charac-
',0' terize the population for itiCh Form 1040 is appropriate. Likewise, the

rate-of-falling-bodies algorithm is an algorithm only if it is applicable
to each and every instance of a class of falling-body problems.

13



5

ts

0

7

Attribute 2. Look again at the procedure for adding fractions (p. 4).
Each step in the procedure is unambiguous, each step fully specifies the
action to be taken. Every user who. is able co perform each of the steps
specified in the procedure will, perform these steps in a uniform manner.
This characteristic of the procedure for adding fractions beings us to
the second defining attribute of an algorithm: an algorithm must possess
replicability; it must specify an unambiguous procedure.

The procedure for executing a Vertical S-A does not possess replica-
bility; some of the steps in the procedure are not unambiguous. For
example, it is quite unlikely that every pilot who has the necessary
entry skills will perform the first step in the procedure ("apply power
at a smooth, slow,and steady rate") in the same manner.

Landa (1974), in his section on the definition of algorithms, uses
the term specificity in a manner similar to the way we use the term re-
plicability. He says:

This property specificityjresides in the requirement that the
prescriptive directions in algorithms must be strictly defined.
Directive instructions must indicate precisely the nature and
conditions of each action, exclude chance components in the
choice of actions, be uniformly interpretable, and be unambi-
guous. Thus, they must refer to sufficiently elementary opera-
tions for an addressed system--person or a machine - -to carry
them out unequivocally.

The specificity, of an algorithm is expressed in the fact that
problem solving by algorithm is a strictly directed process,
completely guided and not admitting of any arbitrariness.
This is a f.rocess which can be repeated by any person (or ma-
chine, if the algorithm is programmed into it) and will lead
to identical results, if the two data sets are identical.
(p. 17)

Trakhtenbrodt (1963) also discusses replicability, although he does
not use that term: "An algorithm must be given in the form of a finite
list of instructions giving the exact procedure to be followed at each
step of the calculation." Hellman et al. (1970) also indicate that an
algorithm must possess replicability. They'state that an algorithm
"specifies the exact procedure to be followed at each step."

'Attribute 3. Consider'the procedure for adding fractions once more
6. 4). No matter how many times a user with the necessary entry skills
performs the procedure to find the, sum of two fractions, he will always
obtain the correct result. This characteristic of the procedure for
adding fractions leads us to the third defining attribute of an algorithm:
saalgo;ithmmust possess_resultivity; it must always lead to a correct
result.'

3
Of course, when a user performs any procedure, algorithmic or other-

wise, there is a chance that he will commit an error. However, in order

14



8

The literatue on algorithms is more consistent with respect to re-
sultivity than it is with respect to any other attribute. The writers
whom we have read either state or imply that an algorithm must possess
the attribute resultivity. Trakhtenbrodt (1963) refers to a sequence of
operations which will give the answer to any problem of a class. Markov
(1961) states that an algorithm must lead to a described result. Knuth
(1968) lists as one of five characteristics of an algorithm the require-
bent that it produce the correct result. Hellman et al. (1970) imply the
same when they assert that an algorithm bust lead to a solution of any
problem of a given kind.

Since the term resultivity appeared first in the English translation
of Landa (1974), and since Landa's definition does have a minoryeakness,
we ought to examine it carefully. He says:

Resultivity. This property it reflected in the fact that an
algorithm always converges on a specific sought-for result,
which is always obtained in the presence of the appropriate
data set. this property of an algorithm, however, does not
assume that algorithms result in the obtaining of the desired
result with all data sets belonging to the defined class.
It is possible that the algorithm*will be inapplicable to
certaix sets of data; and, in that case, the process of
carrying-out the algorithm will either halt suddenly, or it
will never end. (p. 18)

the weakness of this explanation lies in the warning that this property
does not always apply, i.e., that it depends on the data set to be pro-
cessed. This particular difficulty could be resolved by specifying that
sets of data which are unsolvable by an algorithm do not belong to the
"defined class" or, conversely, that the class must be defined so that
the algorithm is applicable to all members of the class. Thus, resulti-
vity becomes a property which is as unconditional as generality or repii-
cability.

foe a procedure to be considered an algorithm, errors must be attribu-
table to the user and/Or factors in the user's environment, rather than
to the algorithm itself. For example, if a user made a computational
error while performing the procedure for adding fractions. this error
could be attributed to the user and the procedure would still be consi-
dered an algorithm. Such errors are called ambient errors; they afe a
function of human vagaries; they wander Ili and out, unpredictably. How-
ever, if one of the steps in the procedure for adding fractions were
revised, and this revision led users to add fractions incorrectly, then
the errors could be attributed to_the-procedure and the procedure would
nor 'oe considered an algorithm. Errors of this type are systematic. If
we can do so without provoking an argument on the subject of determinism,
we would like to state that systematic errors can be predicted and con-
trolled.

5



H

A Traditional Definition

We have now described the three attributes, that a procedure must
possess in order for the procedure to be considered an algorithm. When
these three attributes are combined into one statement, the following
tentative definition of an algorithm emerges: an algorithm is an unambi-
guous procedure which will always produce the correct result when applied
to any problem of a given class of problems. In other words, an algo-
rithm is a procedure which possesses replicability, resultivity, and
generality. The Venn diagram, below, represents this relationship be-
tween t1e set "procedures" and the subset "algorithms;" the shaded area
represents those procedures which are algorithms.

Procedures

The Relationship Between Resultivity and Replicability

While algorithms have traditionally been defined in terms of the
three attributes discussed, algorithms can be defined more simply. Let
us examine the procedure for executing a Vertical S-A again. We have
already stated that this procedure does possess generality, but not repli-
cability. Neither does it possess resultivity, since not every pilot who
has the necessary entry skills will perform the Vertical S-A correctly by
following the specified procedur4e. The unlikelihood of this occurrence
appears to be attributable to the ambiguous nature of some of the steps
in the procedure for executing the Vertical S-A. If this is true, we
can assert that the procedure for executing the Vertical S-A is not re-
sultive because it is not replicable.

Upon further examination, one can say that any procedure which is
" not replicable will not be resultive. That is, if a procedure is not

specified in such a way that it will be performed uniformly by all those
users who have the necessary entry skills, then it is likely that the
lack of uniform performance will, in some instances, lead to the attain-
ment of an incorrect result. Conversely, in order for a.procedure to
always lead to a correct result, that procedure must be unambiguous. In

if _a procedure is resultive, it must be replicable. However,
one should not assume that resultivity and repTiCibliitY are synonymous.
An incorrect procedure may consistently produce a singly incorrect re-
sult. Thus, an incorrect procedure can be replicable, although it cer-
tainly would not be resultive. In summary, all resultive procedures are

16



.

10

replicable, but all replicable procedures are not resultive; in other
words, resultivity is a proper subset of replicability. A revised ver-
sion of our Venn diagram, based on the relationship between resultivity
and replicability, is presented below; the shaded area represents proce-
dures which are algorithms.

Procedures

A Revised Definition

The Venn diagram shows us clearly that algorithms can be defined as
those procedures which possess resultivity and generality. In other
words, an algorithm is a procedure which will produce the correct result
when applied to any problem of a given ciass,of problems. It is not nec-
essary to specify that an algorithm must possess replicability (be
unambiguous) because, as we have, pointed out, resultivity imples repli-
cability.

This definition is a significant departure from those presented in
the. literature as discussed above. It is particularly significant that
Landa (1974), who lists generality, resultivity, and specificity as
essential attributes, actually uses the term specifity (which is synony-
mous with replicability) in much the same manner that we do. To put it

negatively, we cannot find any instance in which Landa Uses the term
resultivity except with the implication that it is a subset of replica-
bility. Thus, our perception of the literature as well, as our own .
analysis of the concept have led us to the conclusion that replicability
is unnecessary and should be excluded from the lit of defining attri-
butes. The law of parsimony is sufficient grounds, in our estimation,
for,reducing the list of defining attributes to two: generality and
resultivity.

We emphasize, however, that this simplification is done on purely
logical grounds. 'As yet, we have no evidence on which to base an asser-
tion that there is'a pragmatic advantage in eliminating replicability
from the definition. Perhaps the simpler definition will facilitate the
empirical classification of procedures as either algorithms or nonalgo-
rithms. Determining, on an empirical basis,'the unambiguity of a proce-
dure appears to be a formidable task. Our revised definition of
algorithms should-eIiilinate-the-need to conduct such a task.



11

The Problem Class, the Result Class, and the User Class

Before proceding to a formal analysis of the elements of an,algo-
rithm, vutwant to translate the abstractions of our definition into some
relatively concrete referents. We shall do this by considering three
descriptors which will always be included in any algorithm presented in
subsequent sections.

, Domain. We have established that an algorithm must possess genera-
lity; it is a procedure which is applicable to any problem of a class.
The domain of the algorithm (Bung, 1971) is the entire class of problems
for which it will work. In order to establish the generality of any
algorithm, the domain must be clearly and explicitly stated.

Look at the fraction adding algorithm once again (p. 4 ). This
algorithm is not for use with problems which consist of three or more
addends. Instead, this algorithm should be applied only to sets of two
fractions expressed in the conventional numerator over denominator form.
It could be restricted to fractions whose terms are natural numbers, but
this is not necessary; the algorithm will yield a solution to problems
in which one, or several, or all of the terms are literal numbers. You
can demonstrate this to yourself by using, the algorithm to add a/x + b/y,
thus:

H: x . y = xy

I: a y = ay

= ay + bx

B: ay + bx
xy

b x = bx

The glass of problems, then, to which thia algorithms applies is any
set of two fractions expressed in numerator over denominator form." That
is the domain of the algorithm. The domain of any algorithm should
*always be explicitly stated.

Range. The application of an algorithm always leads to a specific
correct result which is a member of a set of possible correct results or
outputs. This set of possible correct results is called the range of an
algbrithm (Bung, 1971). In order to establish the resultivity of any
algorithm, the range must be clearly and explicitly stated.

In the fraction addition algorithm, the only possible correct
answers are numbers which represent sums. The difference between, the
product of, or the quotient of two fractions simply will not do. The
algorithm must yield a sum. Furthermore, algorithm will yield a sum
only when applied to a pair of fractions; it i not for use with whole
numbers, with exponents, with decimals. The r ge, then, is "the sum of
any set of two fractions within the domain." As is the case with the
domain, the range should always be _presented, irrespective of the form

in which the algorithm appears.
1

18



12

User. Every algorithm is applicable to a system. The system may
be a human, as in the case of a fifth grader learning to add fractions,
or the system may be a machine, as in the case of a key punch being con-
trolled by an algorithm punched into a drum card. In any event, th'
user Cthe system for which. the algorithm is intended) must possess the
capability of using the algorithm.

Theoretically, it could be argued that every algorithm must be re-
presented in a language which can be "understood" by any user and that
all formulations in that language are completely unambiguous for any user.
Practically, however, it is probably impossible to find or to construct
such a language; it is equally impossible to generate formulations which

are completely unambiguous for an unlimited range of users.

Let us elaborate this last point briefly: The fraction algorithm
possesses geniTiality and resultivity fin. a fifth grader as well as for a
Ph.D. in mathematics. If the latter had forgotten how to add two common
fractions, he 'ould find their sum by applying the algorithm to the pair.
This algorithm could also be represented by the use of abstract algebraic

'symbols. If it were, it would still be exactly the same algorithm. How-
' ever, a fifth grader would be unable to use it.

Because of the variability of potential users of an algorithm, it
is essential that a match be found between the algorithm and the users
for whom it is intended. The kinds of users for which a given procedure
is an algorithm must be specified. In the case of the fraction addition
algorithm, the user must have the ability to factor whole numbers. Any-
one who has mastered this skill (which, too, may be described by an
algorithm) is assumed to have the ability to add and multiply whole num-
bers. If one cannot make this latter assumption, then either it must be
stated explicitly or the algorithm must be revised in one of two ways:'
the user must be shown how to add and multiply whole numbers or a method
of adding fractions must be devised which is independent of the user's
ability to add and multiply. Theoretically (certainly not. practically!)
the latter might be accomplished by means of several tables.

We want to avoid the problem of an infinite regress when we decide
on the starting point for an algorithm. No matter what the first step
in an algorithm may be, there is always.something antecedent which the
user must know or be able to do. The same could be said of that antece-
dent, and so on, and so on, ad infinitum--or at least until one arrives
(after several lifetimes of analysis) at that pristine elemental bit of
information which is the genesis of everything and anything. Arbitrarily
specifying an antecedent knowledge or skill as a starting point, there-
fore, is a simple means of avoiding the infinite regress.

An algorithm, then, is not complete until an explicit statement of
user entry skills is included. We have adopted the convention of
listing the skills) under the headitig entry skills. The statement of
entry skills must answer the qt.estion, "What must the user know or be
able to do in order to use this algorithm?"

One might argue that this descriptor, which is nothing more than
the instantialization of the replicability attribute, is either the most



5

13

important attribute, or at least equal in importance to generality and
reaultivity. tie readily grant this point. However, since no algorithm
can possess replicability if it lacks resultivity, there is no need to
insist on the traditional three -part definition. R2memSer, the user does
not define the algorithm; rather, the algorithm defines the user.

Summary. Every algorithm must be applicable to a class of problems
as opposed to a single problem. The class of problems is defined under
the domain descriptor. Every algorithm must yield a specific sought-for
result'which is a member of a set of results. The,set of results is
defined under the range descriptor. Finally, the user's prerequisite
knowledge or skill is specified under the entry skill descriptor.

20



N

e

III. The Elements of An Algorithms

Introduction

This is the classic Euclidean algorithm:

Domain: Any set of two natural numbers
Range: The greatest common divisor for any set of the domain
Entry skill: Factor natural numbers

A: Convert both numbers
into products of
prime factors

B: Find the smallest
factor of the first
product

a: Is that same factor
among the factors of
the second product?

C: Mark it down

E: Strike this factor
from the first product

D: Strike one occur-
rence of this factor
from each product

b: Is there a factor
left in the first
product?

F: The product of all
factors you have
marked down is the
greatest common
divisor.



16

The purpose of the Euclidean algorithm is to find the greatest common
divisor of two real numbers. For illustration, let us apply the algo-
rithm by using 8 and 12.

A: 8 = 2 x 2 x 2

12 = 2 x 2 x 3

B: 2

a: Yes

C: 2

D: 8 = x 2 x 2

12 = x 2 x 3

b: 'Yes

B-: 2-

a: Yes

C: 2

D: 8 = txtx 2

12 = t x t x 3

b: /es

B: 2

a: No

E: 8 = t x t x t

b: No

F: 2 x 2 = 4

a

(i.e., C x C = 2 x 2)

Exactly the same results will be obtained if the algorithm in
Figure 2 is used. Use the same two numbers, 8 and 12, to test the algo-
rithm.

a: Yes, 8 < 12

A: 12 - 8 = 4 (4 becomes the new second number)

a: No (8 is not smaller than 4)

b: No, 8 i

22



Domain:

17

Any set of two natural numbers

Range: The greateSt common divisor for any set oft4e domain

Entry skill: Subtract naturalnumbers

: Ig the first number
smaller than the
second number?

A: Subtract the first
-mmmber from -t-he

second and regard
the result hereafter
as the second number

Are the two
numbers equal?

C: Either Of thestwo B: Subtract the second
numbers is the number from the first
desired greatest and regard the result
common divisor hereafter as the

first number

Figure 2. Euclidean Algorithm (Version 2)

ti

23



18

B: 8 4 = 4

a: No

b: Yes, 4 = 4

4 is the greatest common divisor

'This is Shipley's alteative to the Euclidean algorithm: 4rn

Domain: Any set of two natural numbers
Range: The greatest common divisor for any set of the domain
Entry skill: Divide whole numbers

A: Divide the smaller'

4
number into the larger
and find the whole
number remainder

1

az Iyhe remainder 0?

B4 The last divisor
is the greatest
common divisor

C: Let
the

and
the

Again, find'he greatest common divisor of 8 and 12.

A: 12 8 = 1; R 4

a: No

C: Smaller number is 4, larger is 8

A: 8 4 = 2, R 0 '(no remainder)

a: Yes

A B: 4 is Lhe greatest common divisor

the remainder be
smaller number -
the divisor be
larger number

4

4
Adapted from unpublished materials developed by Brian Shipley.

.

24
4



r

9

19

Operator. In each of the three algorithms there are statements
which tell you to perform an operation. Statements of this type are
called operators and axe labeled with upper case letters In our illustra-
tions. Examples of operators include:

B: Find the smallest factor of the first product.

B: Subtract the second number from the first and regard the
result hereafter as the first number.

C: Let the remainder be the smaller number and the divisor be
the larger number.

The definition of an operator, then, is the type of element in an algo-
rithm which tells the user to perform an operation.

The exit point of the algorithm may not appear to be an operator:

F: The product of all factors yod have marked down is the
greatest common divisor.

C: Either of the two numbers is the desired greatest common
divisor.

B: The last divisor is the greatest common divisor.

At first glance, these statements do not appear to tell the user to per-
form an operation. Imagine, however, that these.operators were changed
ever so slightly: )

F: 'Write down the product of all the factors you have marked
down; it is the greatest common divisor.

C: Write down either; it is the greatest common divisor.

B: Write down the last divisor; it is the greatest common
divisor.

In this augmented form, the statements are obviously operators.

Discriminator. The second type of statement found in each algo-
rithm is that which requires the user to make a'decision. Statements of
this type are called discriminators and are labeled with lower case
letters in our illustrations. Examples of discriminators include:

b: Is there a factor left in the first product?

a: Is the first number smaller than the second?

a: Is the remainder 0?

This is the definition of a discriminator: an element of an algorithm
*hich requires the user to discriminate between two possible conditions
or between the presence or absence of a specified condition.

25



20

1'
_Syntactic structure. The operators and, discriminators of an algo-

rithm are related to each other. In tae three examples for finding the
greatest common diiisor, these relationships are represented by means of
the lines and arrows as well as by the plus and minus signs. If the
algorithms had been represented by some means other than a flow chart,
these'relationships,might have been represented by such statements as
"If . . ., then . . .", and "Go to . . .", to, mention only the obvious..
Regardless of the form, the structure of an algorithm which relates the
operators and discriminators is called the syntactic structure.

O

Syntactic structure is essentially the-same concept as Frank s
(.969) macrostructure. The notion of a syntactiC structure is not pecu-
liar to algorithms. For example, in automata theory this structure (or
function) is referred to as the "transformation function" (Glushkow,
190). 4

Summary. All algorithms possess operators, discriminators, and a
syntactical structure. 6 Operators tell the riser of an algorithm to per-
form an operation. Discriminators require the user ,to discriminate
.between two possible conditions or between the presence or absence of a'
specified condition. The syntactic structure of an algorithm relates
the operators and discriminators.

5

where:

Frank defines an algorithm as a triple

ow"

R ) }

jr

represents the set of discriminable attributes or reactions of the
A

object to be controlled.

represents the set of operations to be perfrmed on this object.

represents the macrostructural function of the algorithm, i.e., the
function which assigns an element of ei to each element of ?".

6 A procedural algorithm may lack any discriminators. For example:
A: ,Turn on the switch. B: Move the clutch lever from "neutral" to
"operate" is a procedural algorithm which lacks any explicit discrimi-
nators. This paper does not deal with procedural algorithms, since they
have extremely limited applicability to learning and instruction.

':t



.1V. The Representation of Algorithms

Nearly any algorithm may be represented in a variety of forms which
are equivalent in terms of such variables as operators, discriminators,
domain of inputs,, range of outputs, and required entry skills. The var-
ious representational forms differ widely in terms, of readability,
structural clarity, effort required to produce copy, and space required
for publication. The familiar flow chart is usually the clearest and
most readable form; unfortunately, it is also the most difficult and time
consuming to produce. Other forms of representation include standard
prose, coded graphs, linear notational systems, lists, and decision
tables. In the 501lowing pages an algorithm which we refer to as the
"Bird algorithm" is shown in each of these'forms.

Standard prose. First, this algorithm is represented in ordinary-
discursiVe text. The range is "Leaving; feeding and watering0. taking to
a veterinarian; burying;" the domain is "Any instance of a person find-
ing a bird lying on the ground;" the entry skill is "Recognizes birds;
knows what a veterinarian is." This is the algorithm: "You find a bird
lying on the ground. Check if he is still alive. If he is dead, leave
him where he is. If he is alive,'give 50 ml. of water, and 30 g. of

birdseed per day. If he gets better, let him fly. If he doesn't get
better and is still alive, take him'to a veterinarian and follow his in-
structions. ,If be dies, bury him." Ncite that the complete algorithm
11-3ust be read if }You want to know what to ao with the bird. This may not
hthvery.taxing in this particular case, since this algorithm is rela-
tively short and concise:

However, the reading of the complete algorithm is a formidable task
in the following:

t

Domain: Price, transaction expenses, and date of-purchase of
shares of stock; market value on 6 April 1965.

,g Range: Base for tax allowance or charge.
Entry skill: 7th grade" reading ability.

, If the asset,consists of stocks or shares which have
values quoted on a stock exchange (see also paragraph 6 below),
or unit trust units whose values are regularly quilted, the
amount of tax chargeable or allowable depends upon the relative
sizes of the cost price of the asset, its market value on
6 April 1965, and the selling price of the asset.

If the selling price is greater,than the market value,
and the market value is greater than the coat price, tax is

(
charged on the selling price less the market value (less
allowable expenses). If the selling price is greater than
the market value, and the market value is less than-the
cost pkiL, two possibilities arise. Either the selling
price is greater than the cost price, in which case tax is

sr.

a

7
Adapted from unpublished material developed by KlanskBung.

-2'



22

charged on selling price less 'the cost price (less expenses).

Or the selling price is less than the cost price, in which
case no tax is'either charged or allowed.

If the selling price'is less thanthe market value, and
the Market value is less than the cost price, tax is allowed
on the market value less the selling price (plus allowable
expenses). If the selling price is less than the market
value, and the market value is greater than the cost price,
two possibilities arise. Either the selling price is less

' than ,he cost price, in which case tax is allow0 on the cost
price less the selling price (plus expenses). Or the selling
price is greater than the cost price, in which case no tax is
either allowed or charged. (Horabin and Lewis, 1974, p. 6)

Even though, the version of the tax regulation you have just read is
formidable, it is much clearer than the original; nevertheless, it is
still difficult to read and even more difficult to apply. The prime

' reason for the difficulty As that the user is forced to read more than
necessary. Assume that the user is compgiing the tax for one particular
instance. 'Only'a few of the many conditions given in the algorithm are
applicable to this particular case. Despite this, the user must read
everything, trying to discard the irrelevant and remember (or apply) the
relevant as he goes along.

, Flow charts. This is the standard form used in the previous sec-
-,tions; its advantages in terms of readability and structural clarity are
obvious.

Domain:

Range: '

Entry,ry, skill:

Any instance-of a person finding a bird lying on the
ground.

Leaving; feeding and watering; taking to a veterinarian;
burying.

Recognizes birds; knows what a veterinarian is.

A:' You find bird
lying on the ground. .

a: Is the bird still
alive?

B: Offer him 50 ml. of
water, and 30 g. of
birdseed'per day.

b: Has his condition
improved1

c: -Is he alive?D: Let him fly.

E: Take him to a veteri- F: Bury him.
narian and follow
his instructions.

C: Lead 'him.

.x.rammormaiNil



A

23

this is the flow chart form for the algorithm for the capital gains
tax given above in prose form (Horabin and Lewis, 1974, p. 8):

Domain:,

Range:

Entry skill:

YES

Price, transaction expenses, and date of purchase of
shares of stock; market value on 6 April 1965.
Base for tax allowance 07 charge.
7th grade reading ability.

START ,

Is Selling price
greater than
market value?

YES NO

Is market value
greater than
cost price?

Is market value

greater than
cost- price?

NO YES

Is selling price
greater than
cost price?

NO

NO

Tax charged
on selling

price less the
market value
less expenses.

Tax charged
on selling

price less the
cost price,

less expenses.41
No tax
either

Charged o

allowed.

Tax allowed
on cost price

;ess the
selling. price

plus expenses

Tax allowed
on market

value less the
selling price,
plus expenses.

'Coded graphs. Bung makes a distinction between plain prose graphs
such as the one above or coded prose graphs such as the flow chart of
the Bird algorithm (see p. 24). If the latter, each operator is pre-
ceded by a capital letter and each discriminator is preceded by a lower

_case lettbr. (These code letters can also be used to represent algo-
rithms in two other ways, as shown in the next section.)



24

Coded graphs must be accompanied by a key which associates the code let-
ters with the verbal statements of discriminators and operators. The

key for the algorithm above is as follows:

Discriminators

a: Is the bird still alive?
b: Has his condition improved?

c: I's he alive?

Operators

A: You find a bird lying on the ground.
B: Offer him 50 ml. of water, and 30 g. of birdseed per day.

C: Leave him.
D: Let him fly.'
E: Take him to a veterinarian and follow his instructions.
F: Bury him.

Linear representation. Longer and more complex algorithms in the
form of-flow charts take up much space and the typing and drawing is
time consuming. These difficulties can be avoided by using a linear
form of representation employing arrows and code letters (Lyapunow,
1960). Bung (1969) modified Lyapunow's system so it could be typed with
any normal typewriter without the use of arrows, Bung calls thie system
BULL notation. Both the BULL notation and Lyapunow's system require the
use of a key. The Bird algorithm in BULL notation is as follows:

A a 2 B 5 b 3 D. 3c4E5y4 F.2 C.

Bung provides the following reading instructions for this notational

system:

3



25

If the question associated with a discriminator is answered
Yes, we call the discriminator positive; otherwise we call
the discriminator negative. Operators are denoted by capital
letters and discriminators by small letters. The number
immediately on the right of a small letter is called 'source
number.' Any other number is called 'target number.' The
left-most letter is understood to incorporate the start
instruction. Read from left to right uuless otherwise in-
structed. After an operator or a positive discriminator,
read the nearest letter or full-stop on the right, ignoring
any numbers; After a negative discriminator, read the
source number adjacent on the right. Then read the identi-
cal target number. Then read the letter on the right of the
target number. Stop after having"read a full-Stop.

Bung recommends that the lower case y never be used as a code letter for
a discriminator but only to indicate that the number preceding it is a
source number for a recursive loop.

List form. The list form is frequently used to represent algo-
rithms for identifying things. Such algorithms` are common in botany and
zoology; they Are frequently called "keys." An example of a key to in-

sect families is the identification tree below:

Domain: All 'insects of 'the order Hymenoptera

Range: Each family of the order Hymenoptera
Entry skill: Ability to identify parts of an insect, such as sheath,

femur, antennae, pronotum.

li I
s 1.1 : .1.pi it 40 ift I ill E4 . iiiiiii li.. - -.1: Ea.! a E.2...7; s

SAg kg/ l'ius VA g a0A-4 .gg. Mall
a Iti
vt a
< o .4

Pollen
feeders

/

SawfLies

\\\\
Specialized wasps
parasites Femur ?wed:

wows. all 212

/ /I
PmalyzMg1

/ Prim five Rm.. of
=sites sheath hidden

Provisioning
wasps

Pronotwo lobed.
far Sots Legates

Horntails

MMIdstedsaMn
parasites

SUrm borers,
larva] legs reduced

3



26

The Bird algorithm can be represented in list form:

A: You find a bird lying on the ground.
a: Check whether he is still alive.

If yes, go to B; if no, go to C.
B: Offer him'50 ml. of water, and 30 g. of birdseed per day.

Go to b.
b: Check whether his condition has improved.

If yes, go to D; if no, go to c.
C: Leave him.
D: Let him fly.
c: Check whether he is still alive.

If yes, go td E; if no, go, to F.
E: Take him to a veterinarian and follow his instructions.

Go back to b.
F:' Bury him.

The first operator and discriminator, A and a, can be contracted into
one instruction since the sequence operator - +discriminator is unequivo-
cal: This is not the case for operator B and discriminator b. Discri-
minator b can also be reached via the recursive loop originating from
operator E. The list, therefore, has to have separate items B and b in
that sequence.

The algorithm in list form,shown below (Landa, 1974), represents a
very simple algorithm for starting.a type of machine.

1. Verify whether the apparatus is plugged in'.
If yes, then proceed to instruction 3.
If not, then proceed to instruction 2.

2. Plug it in.
3. Flip the switch.
4. See whether the red light has come on.

If yes, then proceed to instruction 5.
If not, then proceed to instruction 6.

5. Begin work.
6. Call the technician.

Note that both this list form and the flow chart form offer advantages
over the plain prose form. The reader has to read only what is ,relevant
to his specific problem when he uses the list or flow chart forms of
representation. However, the flow chart form provides a graphic illu-
stration or a picture of the relationships among the elements of the
algorithm; the list form does not.

Decision table form. This form is not amenable to every type of
algorithm. Possibly only identification algorithms, such as the key ot,
p. 24, can be put into this form. If the algorithm includes transforma-
tions which must be observed over time, as is the case in the Bird algo-
rithm, there is no way to list the intermediate operations. Davies
(1971,.p.143) gives the example of decision table for an official regula-
tion shown below:

32:



27

Decision Table for the Death Grant Regulation

CONDITION STUB CONDITIONS ENTRIES

Ql Were the contributions paid late? No, Yes Yes Yes Yes Yes

Q2 Were the contributions paid be-
,

fore the death of the subject of
the claim? No Yes Yes Yes Yes

Q3, Is the insured person alive? -- -- No No Nb Yes

Q4 Were the contributions paid be-
fore the insured person died? -- No No Yes --

Q5 Have the contributions already
been taken into account for a
'claim for a wiaow's or retire- .

went pension? -- -- No Yes -- --

ACTION STUB ACTION ENTRIES

Death grant, is payable: * * * *

Death grant is NOT payable. * *

,i-
-1--

Rules (1) (2) (3) (4) (5) (6)

(A dash in-the condition entry column indicates that either a yes or a

no answer is acceptable. In other words, the answer tc the question

does not affect the final outcome.)

Summary. An algorithm may'be represented in a variety of ways.

Some of the more common forms are flow chart, standard prose, coded

graph, linear-notational system, list, and decision table. Despite the

fact that flow charts require considerable production time and a great
deal of page space, they have advantages of clarity and economy for the

user.

33



V. Taxonomies of Algorithms

The algorithm in Figure 3 was constructed to enable zoology

students to identify the family to which erAmples of the order neuroptera
belong. Consider a very simple example. You've found an insect with two
pairs

mouth
clear wings having many veins and crossveins. It has chewing-

type outh parts, long and multisegmented antennae, and large eyes.
You're quite certain that it is a member of the order neuroptera; you
Want to identify the family to which it belongs.

First, a. disclaimer: If your hypothesis concerning the name of the
order is wrong, the algorithm simply won't function. Earlier it was
established that a true algorithm possesses the attribute generality; it
will yield a correct result when used for any problem of a certain class.
In this case, the class of problems is "identifying the family to which
a given specimen Of the order neuroptera belongs."

Let's return to the task. The insect (a) has front legs with
apical segments slender, same as other legs; (b) it is a small insect
with numerous veins and crossveins and it is covered with a waxy bloom;
(c) the front wings have a regular, fencelike series of 16 croesveins
(graduate veins), similar to those between Ri and Rs in Figure 285E; (d)
the antennae are long and slender, as in Figure 284, tapering to an apex.

Look at the description, just given, and find each characteristic
in the algorithm. Characteristic "a" is found in the first member (1)

of the algorithm. The critical portion of this statement (the discrimi-
nator) is the last part; this branch of the discriminator leads to the
"2". (Technically, the discriminator is, "Do the front legs have slender

apical segments?" The response Les leads the user to the operator, "Go

to 2.")
(

Use the second member of the algorithm to make he appropriate dis-
crimination concerning characteristic "b" (small; numerous veins, cross-

veins; waxy). You go to 3.

Characteristic "c" (series of 16 crossveins) is processed by means

of the third element. The algorithm forces you to make the discrimina-

tion which leads you to 4.

Characteristic "d" (long, slender antennae) meets the requirement
of the first discriminator in the fourth element. This is an exit point.

You've used the algorithm to complete'your task. The result is that you
correctly identify the family chrysopidae as the one to which the speci-

men belongs.

This type algorithm is an identification algorithm, one used to
identify an object as belonging to a certain class of objects, events,

symbols, or characteristics. The object must be a member of the class

(or set) of inputs for which a given algorithm is intended (See "Domain,"

Section II, above). In the-example above, it was pointed out that the
algorithm would function only if the specimen was indeed a member of the

order neuroptera.

34



D
o
m
a
i
n
:

R
a
n
g
e
:

E
n
t
r
y

sk
ill

:
A
l
l
 
i
n
s
e
c
t
s
 
o
f
 
t
h
e
 
o
r
d
e
r
 
N
e
u
r
o
p
t
e
r
a
.

E
a
c
h

fa
m

ily
 o

f t
he

 o
rd

er
 N

eu
ro

pt
er

a.
A

bi
lit

y 
to

 id
en

tif
y 

pa
rt

s 
of

 a
n 

in
se

ct
:

ve
in

s,
 a

nt
en

na
e,

 w
in

gs
;

ab
ili

ty
t
o
 
r
e
c
o
g
n
i
z
e
 
i
n
s
e
c
t
s
 
o
f
 
t
h
e
 
o
r
d
e
r

N
eu

ro
pt

er
a.

,

O
ld

er
 N

E
U

R
O

P
T

E
R

A
. L

ac
ew

in
p,

 M
an

tis
pi

ds
fh

e 
ad

ul
ts

 li
e 

m
in

ut
e 

to
 la

rg
e 

in
se

ct
s,

 u
su

al
ly

 w
ith

 tw
o 

pa
irs

 o
f d

im
e

w
in

gs
 h

av
in

g 
m

an
y 

ve
in

s 
an

d 
cr

oo
rin

s,
 w

ith
 c

he
w

in
g 

ty
pe

 m
ou

th
pa

rt
s,

lo
ng

 a
nd

 m
ul

tis
eg

m
en

tr
d 

an
te

nn
ae

, a
nd

 la
rg

e 
ey

es
. f

ig
28

4A
. T

he
la

rv
ae

 a
re

 v
ar

ie
d.

 M
os

t o
f t

he
m

 a
re

 te
rr

es
tr

ia
l a

nd
 p

re
da

ce
ou

s;
 o

ne
 fa

m
ily

(.
%

sy
rid

ae
) 

is
 a

qu
at

ic
, a

nd
 th

e 
la

rv
ae

 fe
ed

 in
 fi

es
hw

at
er

 s
po

ng
es

. A
ll

th
e 

la
rv

ae
 h

av
e 

th
or

ac
ic

 le
gs

, b
ut

 n
o 

ab
do

m
in

al
 o

ne
s,

 w
el

l-d
ev

el
op

ed
he

ad
s,

 a
nd

 m
an

dr
hu

la
te

 in
no

th
pa

rt
r.

R
IM

 T
O

 IA
M

IU
T

S

I. 
F

r 
ra

t f
eg

i w
ith

 a
pi

ca
l s

eg
m

en
ts

 e
nl

ar
ge

d 
fo

r 
cr

an
in

g.
 fi

g 
28

6
.

A
ta

nf
is

pi
da

e
F

lo
m

w
ith

 a
pi

ca
l s

eg
m

en
ts

 s
le

nd
ir,

 s
an

er
 o

th
ot

 le
gs

, f
ig

 2
84

.
2

2.
 W

in
gs

 v
oi

t..
ry

 fe
w

 v
ei

ns
 o

r 
cr

am
m

in
g.

, f
ig

 2
85

6.
 M

in
ut

e 
in

se
rt

s 
co

ve
re

d-
w

ith
a,

w
ax

y 
gl

oo
m

 a
nd

 g
ra

y 
in

 a
pp

ea
ra

nc
e

C
on

ic
oi

qt
r)

W
in

gs
 w

ith
 w

 w
s 

an
d 

an
ni

ve
in

v.
 n

um
er

al
...

 fi
g 

'9
15

C
-C

.
La

rg
er

 in
se

ct
s 

ne
w

:
co

ve
re

d 
w

ith
 w

ax
y 

bl
oo

m
.

.
3

3.
 F

ro
nt

 w
im

p 
ru

sh
 a

 r
eg

ul
ar

. f
et

w
el

O
to

e 
w

rie
r 

of
 1

2 
or

 m
ac

...
ra

m
m

in
g 

(g
ra

da
te

 w
in

g)
be

tw
or

ts
 R

, a
nd

 if
.. 

fig
 2

85
E

F
ro

nt
 w

iry
 e

ith
er

 w
ith

 o
nl

y
...

el
l-s

ep
ar

at
ed

 c
ro

ar
ve

in
t b

et
w

ee
n 

R
, a

nd
 R

.,
fig

 7
11

5C
. C

,tx
 R

s 
m

l m
em

o(
 R

. R
ve

vi
. f

ig
 2

85
0

4.
 A

nt
en

na
e 

lo
ng

 a
nd

 s
le

nd
er

. f
ig

 2
84

, t
ap

er
in

g 
to

 a
pe

s
1i

:h
i-p

op
:d

ee
A

nt
en

na
e 

ei
th

er
 s

ho
rt

 a
nd

 d
iv

in
e 

or
 It

 tw
ill

ed
 a

t a
pe

:
. 5

S
. A

nt
en

na
e 

sh
or

t, 
gr

ad
ua

lly
 th

ie
ke

ne
d 

lo
w

an
ig

ap
ez

hl
yi

nw
le

on
6d

ae
A

nt
en

na
e 

lo
ng

, k
no

bb
ed

 a
t a

pe
s

A
sc

al
ap

hi
da

:
6.

 F
ro

nt
 w

in
gs

 .n
th

 2
 o

r 
m

or
e 

br
an

ch
es

 o
f R

,a
ru

an
g 

bo
rn

 fu
se

d 
R

, a
nd

 R
., 

fig
 2

85
D

I l
em

er
ob

hi
da

e

ek

F
ig

 2
8$

liw
or

ry
w

or
a

A
. R

, .
4.

14
 a

w
l l

aw
. o

f a
 W

e 
w

in
g 

(-
ar

ro
yo

. t
om

 o
r.

 L
ov

a 
4

irw
ee

re
w

le
r

m
 (

A
. I

t S
no

w
 1

14
.4

. N
at

C
.O

.«
 L

ow
nw

er
ly

F
ro

nt
 w

in
gs

 w
ith

 II
I N

am
-h

es
 o

f P
. a

tiv
in

g 
Io

w
a 

a 
se

rv
al

. R
. i

te
m

. f
ig

 T
R

W
, F

. C

7.
 F

ro
nt

 w
in

gs
 w

ith
 a

lm
os

t a
ll 

en
vo

i c
si

ne
m

in
s 

S
ak

ai
, f

ig
 2

85
F

.G
.

A
F

ro
nt

 w
in

gs
 w

ith
 Ic

e 
oe

 n
es

 c
os

ta
l a

 n
av

eo
w

 fo
rk

ed
 a

nd
 w

ill
. a

pi
ca

l m
ar

gi
n 

ev
en

ly
ro

un
de

d,
 e

 s
 in

 fi
g.

 2
8S

4'
,C

v
.

,
'9

S
. F

ro
nt

 w
in

gs
 o

nl
y 

sl
ig

ht
ly

 in
ci

se
d 

an
d 

w
ith

 r
ec

on
en

t c
os

ta
l w

in
, f

ig
 2

R
S

C

P
ol

ys
to

es

F
ag

 2
1I

5
F

rr
on

t w
in

p 
4 

N
ew

el
...

 A
 .1

,1
.8

.4
4.

. A
lm

 W
s.

. R
.S

...
1.

/n
,C

ro
rw

om
vo

ry
to

l..
.

G
 C

ie
 n

is
ei

, S
is

ta
ds

e.
 D

. i
l..

...
to

m
, 1

1.
im

nd
w

da
e.

 8
, C

A
9.

V
., 

M
er

op
al

a.
.,

C
. M

pu
et

4.
4.

. P
rip

in
ec

hn
al

..
4.

 b
aw

l v
an

. e
ve

in
 (

F
ra

n 
--

--
- 

n
re

ar
m

s)

F
ro

nt
 w

in
gs

 m
ar

ke
dl

y 
in

ci
se

d 
an

d 
w

ith
 n

o 
re

cu
rr

en
t c

ar
te

l v
ei

n,
fig

 2
8S

F
&

T
ot

h:
da

y
S

. F
ro

nt
 w

rin
gs

 w
ith

 5
, a

nd
 R

I n
ot

 fi
ne

d 
lw

fw
e

ap
ex

; D
ot

al
 v

ei
n 

(k
) 

pr
es

en
t, 

fig
 2

8S
A

D
ila

tid
ar

.
F

ro
nt

 w
in

g,
 w

ith
 5

, a
nd

 8
, f

in
al

 w
an

e 
di

st
an

ce
 b

ef
or

e
ap

ex
, b

as
al

 v
ei

n 
ab

se
nt

,
fig

. 2
83

C
S

is
ys

id
ae

-
.

F
i
g
u
r
e
 
3
.

E
x
a
m
p
l
e
 
o
f
 
a
n
 
I
d
e
n
t
i
f
i
c
a
t
i
o
n

A
l
g
o
r
i
t
h
m
 
i
n
 
B
i
o
l
o
g
y



31

The class of outcomes to which bn identification algorithm leads
(see "Resultivity," p. 7) is comprised °fall the subsets which make up
the class--in this case, all the families of the order. This concept,
of course, is termed 'Irange" (See ix. 11).

-The algorithm9n 164 24 is another identification algorithm. Such
algorithms are much used in botany, zoology, and geology.. ;Frequently
they are called keys. Less obvious examples of this type of algorithm
are those which are used to determine the ruleb, algorithms, or proce-
dures applicable in a given case. Landa (1974), for example, presents
identification algorithms whic% permit the user to determine which.gravp-
matical rule he must apply. Thua, The rule which determines the manner
in which simple sentences arejolned depends on the type of sentences.
Figure 4_depicts an algorithm for the identification of simple sentences.
Similar'Algorithms can be found tn mathematics or in trouble-shooting
manuals for mechanical or electron is equipment and in other areas.

Many of us at one time or another have been uncertain about how to
punctuate a possessive noun: where do we place the apostrophe, particu-
larly in plural nouns or in singular nouns ending in "s"? The algorithm,
in Figure 5 is designed to enable the user to transform nouns from the
nominative case to the possessive.

We can test this algorithm by trying the following unpunctuated,
examples:

1. The...5.1(s fur (i.e., the fur of me ca t)

2. The goys locker room (i.e., the locker room ofsall the boys)

3. Johnsons coat (i.e., the coat belonging to Johnson)

4. The Smiths residence (i.e., the residence of all the members of
the Smith family)

The solution, in code form, for Example 1 is a b f B; for Example 2,
a b f C; for Example 3, a b c d B; and for Example 4-, a b c C.

This possessive form algorithM is a very simple transformation algo-
rithm,,,. It enables the user to transform a noun from the nominative form

to the possessi* form. The Euclidean algorithms in Section:III, above,
are examples oMransformation algorithms. In theoretical terms, such
algorithms enable users to Change members of the domain set (or a set of
inputi) into a member\of the range set (or an output set).

An algorithm need not be purely identification or purely transfor-

mation. The fraction addition algorithm, shown in Figure 6, is a

mixture of the two types. Part of it (indicated by means of the heavy
lines) is An identification algorithm; it enables the user to identify

fractions. The remainder (indicated by means of the light lines) is a
transformation algorithm; it enables the user to transform two, addends
into a single sum.

3 C



Domain:
Range:

Entry skill:

p

32

The five types of simple sentences (in Russian)

Names of the five types: Definite personal (I and II),
Elliptical, Indefinite personal, and Impersonal.
Distinguish between subject and predicate; conjugate verbs.

(1) Is there a subject
in it?

Yes

(2) Is there a
predicate?

Yes

r
Conclusion
Definte-
personal
type I

4'

J No

1
(2) Is the predicate

expressd by a ,

verb in the first
or second person?

No Yes

Conclusion:
Elliptical

.

Conclusion:
Definite -

personal
type II

No

(3)

Yes

I

Conclusion:
Indefinite-
personal ,

1
Is the predicate
expressed by a
verb of the third
person plural (in,
the past tense,
simply by a verb
in the lural)?

No

Conclusion:
Impersonal

Figure 4. Identification Algorithm after

Lands (1974), p. 437

3

O



Domain:

Range:
Entry skill:

33

Vocal or subvocal expressions including a possessive noun
and the object of the posseSsion.
Written possessives.

Ability to write the nominative form of a noun after hear-
ing or saying the possessive form.

4

Pi-toper

b:

a: Does the phrase'contain
a term naming an owner
and a term naming some-
thing owned?

YeS

Is the word naming the
owner a
is it a

c: Is the word singular
or is it plural (e.g.,
the Rosses, the
Williamses)?

Plural

d: Does the nomina-
tive form of the
word 'end in "s" or
in an "s" .sound?

No

proper noun or
common noun?

1 Common

No

A: No possessive

f: Does the nominative form
of the word naming the owner
end either in "s" or in an
"s" sound (such.as lass,
appearance or.righteousness)?

Yes

Yes /

e: Is the word Jesus,
Moses, or a Greek
name ending in "es"
(e.g., Euripides,
Xerxes)?

Yes No

C:

No

Add to the nominative
form of the word to
form the possessive.

B: Add 's to the nominative
form of the word to form
the possessive.

Figure 5. Algorithm for Forming the Possessive of English Nouns



at -Identical denominators?

Yes

.1

34'

k: Is o e denomi-
nator a multiple
of the other?

Yes

Factor larger denomi-
nator into two factors
with smaller denomi-
nator as ane factor.

Multiply'the numera-
tor ,nd denominator.
of the.other fraction
by thin fictor.

Yes

At,

c: Are the denomi-
nators multiples
of a common factor
other than 1?

.,
F: Form the common denomi-

nator by multiplying
the common factor by
the two unique factoth.

viG: Multiply eac numera-
tor by unique factor
of the denominator of

-
the other fraction.

A: .Add numerators.

B: Write sum over com-
mon denominator'.

H: Fora, c. on denomi-

nator by multiplying
the two individual
denominators.

I: Multiply each nume-
rator by denominator
of other fraction.

Figure 6_ Algorithm for Adding Fractions

I

Landa (1974) refers to a third type of algorithm, one will h enables

the user to discover previously unencountered identification and/or
transformation algorithms. He calls this a search algorithm and illu-
strates it by means of an example inwhich a learner.is taught how to
turn on a given machine. One method of teaching the learner this skill
would be to make use of a transformation algorithm designed for the task.
Landa contrasts this method with one in'which the learner uses a search

algoriihl.

3i) .



A second method of dnstruction is to supply the student with

some search algorithm without explaining thp'algorithm of

solution to him, pointing out, for example, what sequence of
actions he must try to perform with the apparatus in order
to find the unknown rules for turning It on and for verifying

that it is in working order (i.e., discover the algorithm
of solution). In,that algorithm, for example, there could

be indications of the type: At first try pressing button

then b; i nothinghappens,,then try placing the switch in
the up position-, then push button a, and so on. In an algo-

rithm to search for another algarithm,,all possible opera-
tions and their sequences mustlie foreseen. In carrying out

these operations; the student nedessarily discovers which
sequence of operations leads to the goal, i.e.,iuncovers the
algorithm of solution which he can then apply to any equip-

went of the sine design. (p. 133) '1

Unfortunately, Lands doesn't provide a more specific example.

Neither does he Teport any empirical investigations dealing with search

algorithms. Bussmann (1971) reports an investigation of. the effect of

teaching learners search algorithms for the solution Of a. type of

"puzzle" problem. The Katona (1940) match stick pro lem, which tussmann

il
used, is a classic problem in the, tudy of learning and retention. The

subject is given,a figure consisting of a number of djoining squares.

His problem is to reduce the number of squares to one than the ori-

ginal by moving one and only one match stick. Below is an example of

the Katona match stick problem:

M 0 N

4, One of Bussmann's algorithms for the solution of Katona match stick prob-

lems is as follows:



36

Domain: All Katona match stick problems in which the movement of

one side to a new position reduces the number of squares
by one.

Range: The side to be moved; the new position of that side.
Entry skill: Identify interior side, isolated side, incomplete square.

.No solution
possible.

IC

1 This is not a correct
solution. Replace the
side in its original
position.

Is this isolated side
part of an incomplete
square of 3 sides?

If you complete this
incomplete square, will
you complete another
at the same time?

Look at Figure M.

JDoes Figure M have an interior
side which can be moved?

1'
[..Remove this side. The remain-
ing sticks make up-Figure M'.

Does Figure M" have more than
1 isolated, side?

Does Figure MC: have exactly 1
isolated side?

Complete the in-
complete square

011111111111110111MINIMM=MIIMMI.

41

Does Figure M have an incom-
plete square of 3 sides which
you have notrpreviously tried?

If you complete this inoom-
plete square, will ,you complete
another at the same time?

The problem
is solved.=reas.1



Bussmann clearly ascribes the qualities of Landa's search algorithm to

both his Katona algorithms.8 However, it is clear that the algorithm
presented here is one which yields solutions to a given class ogKatona

problems. Consequently, it cannot be a search algorithm in the Landa
sense, A search algorithm does not produce a solution, per se; rather,

it ptoduces an algorithmic method for arriving at solutions. Bussmann's

algorithm is clearly a transformation, not a search, algorithm in the

sense in Which we have defined the two terms.

Although we lack the ability to present examples of search algo-
rithms at this time, we are convinced that further study of this kind of
algorithm is an extremely promisiqg area for future research and develop-

ment. Perhaps instruction in algorithmic search methods could result- in

a learner's acquisition of a generalized,problem-solving ability. It is

even conceivable that such instruction could significantly influence

mental, o ment. Further speculation on this subject is reserved for

Section ow.

Algorithms may also be classified as functional or control algo-

rithms. Landa (1974) defines a functional algorithm as "an algorithm by

which the operation of a system is carried out." If this system re-

quires the intervention of a higher-order system for any reason and if
this second system intervenes in a predictable, algorithmic manner, ;then

this second system acts according to a control algorithm. The two con-

cepts are relative. A student solving an equation in a programmed text-

book follows a functional algorithm. The path he is to follow through

the program is
.

a controlling algorithm with respect to the subsystem

"student" but it is a functional algorithm with respect to the higher-
order system "textbook and student." Textbook and student, as seen from

the standpoint of the teacher, follow a fUnctional algorithm as long as

all goes well. As soon as the student needs additional help, the tea-
cher intervenes; he'may do so algorithmically, i.e., according to an
algorithm which is a control algorithm for the systeM "student-textbook"

but a functional algorithm for the system "teacher."

The functional algorithm for the teacher is the algorithm by which

the teacher functions (as long as his behavior is lawful). In ore

general terms, the functional algorithm of the teaching system (the pro-

grammed text, the computer, the teacher, etc.) is called a teaching
algorithm (Lansky, 1969; Landa, 1974); it is in distinct contrast to
the functional algorithm of the learning system, which is called a

learning algorithm (Lansky, 1969). The latter term is also used for

algorithms the learner is *supposed to learn. In order to avoid confu-

sion of these two fundamentally different classifications, Bung (1969)
has suggested the term subject matter algorithm to designate'a learning

algorithm which,the learner is supposed to learn.
/

8 Although Bussmann's article appeared in 1971, he had access to
the original Russian as well as the German translation of the work which

we refer to as "Landa 1974."

1

42'



38

To summarize:

A functional algorithm is an algorithm by which a user functions;
one by which the operation, or function, of a system is executed.

A control algorithm is an algorithm which controls the user's path
through another algorithm.

A teaching algorithm is the functional algorithm of a teaching
system.

A learning algorithm is the functional algorithm of a learning
system.

Landa (l974) distinguishes between an algorithmic process, an algo-
rithmic prescription and an algorithmic description. A computer, for
example, is involved in an algorithmic process when it executes a pro-
gram. If this program is in a form that the computer can read (such as
punched cards, for example), then the program controls the process and
it is an algorithmic prescription. If the program does control the pro-
cess and if it can be used for communication oily it is an algorithmic
description. A human brain may or may not function as deterministically
as a computer:bnt when humans do behave in a lawful and predictable
manner, they are engaged in algorithmic processes, or at least in quasi-
algorithmic processes. If one does so intentionally and consciously by
following an explicit procedure, one is following an algorithmic pre--
scription. If a person does so without conscious intent and awareness,
his activity may be amenable to algorithmic description, but it does not
necessarily follow an algorithmic prescription. The rules of grammar$
for examplef are followed correctly both by people who know them.and can
state them and by people who cannot do so. Both kinds of people engage
in algorithmic processes, hut the rules of grammar are algorithmic pre-
scriptions for the former-only, even though they are algorithmic descrip-
tions for both.

To summarize:

When a user consciously and intentionally applies an algorithm, he
is following.an algorithmic prescription.

When a user, without conscious intent or awareness, applies an
algorithm, he is not following an algorithmic prescription even though
his activity may be amenable to algorithmic description.

I



4

VI. The Uses of Algorithms in Instruction

Algorithms as Aids to the Learner

We have already seen that an algorithm tells the.user exactly what
to do. An algorithm makes it possible for any user who possesses the
requisite entry skills to solve correctly any problem of a given class
of problems. Furthermore, this user solves the problem by using pre-
cisely the procedure, and only that procedure, which the algorithm
writer intended. The error potential attributable to misinterpretation
is always minimal since the representation of an effective algorithm is
always simple and unambiguous. Given an adequate algorithm, someone
with little or no retraining should be able to perform correctly, ade-
quately, and consistently,, even when he is confronted, with tasks as
difficult as troubleshooting and repairing complex equipment, preparing
and interpreting reports, or evaluating performances.

If an algorithm is represented in an appropriate form, the user is
spared the waste of time which occurs when 'Fie must read both the rele -'
vent and the irrelevant contingencies. In the algorithm for forming
possessives, the user is spared the trouble of reading two unneeded dis-
criminators and one unneeded operator whenever he is dealing with a
common noun. If the same algorithm were presented in discursive text
form, it is highly improbable that he could avoid reading all the text,.
Note, however, that this efficiency ia a function not of the algorithm
per se, put rather of the form of representing the algorithm.

We pointed out in the section'on reprec cation that an algorithm
need not be completely read before a user begins to apply it. Even more
important, it need not Ile.completely understood in order for a user to
apply it. This is not to be construed as meaning that we are.endeavo-
ring to assist learners in solving problems without understanding the
procedures they employ. On the contrary, an algorithm enables a user
to develop understanding, little by little, as he sees a process work
for him. Consequently, algorithms permit successful application and
understanding to develop simultaneously.

,

Many algorithms are self-sufficient performance aids. Given the
minimal instruction in how to "read" the representation form, such as a
generaliied flow chart, the user frequently needs no other assistance in
mastering the skill which the algorithm is designed to implement. Most
algorithms are excellent examples of "self-instruction."

Algorithms may be used to enable a learner to check the accuracy
of a diagnosis or a preseription which he has made. In this context,
an algorithm enables a learner to monitor his own performance effec-
tively. Consider the key for selecting evaluation models, Figure 7,
(from Horst, Talmadge, and Wood, 1975). The student has learned what
the five models are and how to choose one of the five when confronted
with a summary account of a project. As he acquires skill in diagnosing
the nature of a project and in selecting a model, he learns to check the
validity of his selection by comparing it with the result obtained when
he uses the key. Obviously, the disFiminators in this kind .of



Q
u
e
s
t
i
o
n
 
I

I
s
 
i
t
 
f
e
a
s
i
b
l
e

t
o
 
e
m
p
l
o
y
 
a

c
o
m
p
a
r
i
s
o
n

g
r
o
u
p
 
e
v
a
l
u
a
-

t
i
o
n
 
d
e
s
i
g
n
?

Q
u
e
s
t
i
o
n
 
2

W
i
l
l
 
g
r
o
u
p
s
 
o
r

i
n
d
i
v
i
d
u
a
l

p
u
p
i
l
s
 
b
e

a
s
s
i
g
n
e
d
 
t
o

e
v
a
l
u
a
t
e
 
c
o
n
-

d
i
t
i
o
n
s
?

Q
u
e
s
t
i
o
n
 
3

W
i
l
l
 
a
s
s
i
g
n
m
e
n
t

t
o
 
g
r
o
u
p
s
 
b
e

r
a
n
d
o
m
 
o
r
 
d
e
t
e
r
-

m
i
n
e
d
 
b
y
 
n
e
e
d
?

'
Q
u
e
s
t
i
o
n
 
4

M
o
d
e
l
 
1

C
a
n
 
t
r
e
a
t
m
e
n
t

a
n
d
 
c
o
m
p
a
r
i
s
o
n

p
u
p
i
l
s
 
b
e
 
m
a
t
c
h
e
d

o
n
 
p
r
e
t
e
s
t
 
s
c
o
r
e
s
?

o
s
t
t
e
s
t

c
o
m
p
a
r
i
s
o
n

i
t
h
 
m
a
t
c
h
e
d

g
r
o
u
p
s

Q
I
:
e
s
t
i
o

G
t
o
u
p
s

N
e
e
d

M
o
d
e
l
 
2

A
r
e
 
g
r
o
u
p
s

e
q
u
i
v
a
l
e
n
t
 
o
n

e
d
u
c
a
t
i
o
n
a
l
l
y

r
e
l
e
v
a
n
t
 
v
a
r
i
-

a
b
l
e
s
?

Y
e
s

C
o
v
a
r
i
a
n
c
e

A
n
a
l
y
s
i
s

Q
u
e
s
t
i
o
n
 
6

M
o
d
e
l
 
3

W
i
l
l
 
a
s
s
i
g
n
m
e
n
t

b
y
 
n
e
e
d
 
b
e
 
d
e
t
e
r
-

m
i
n
e
d
 
f
r
o
m
 
a
 
p
r
e
-

t
e
s
t
 
c
u
t
o
f
f
 
s
c
o
r
e
?

41
11

,
Q
u
e
s
t
i
o
n

N

7

Y
e
s

S
p
e
c
i
a
l

R
e
g
r
e
s
s
i
o
n

.
M
o
d
e
l
s

M
o
d
e
l
 
4

D
o
e
s
 
t
h
e
 
c
o
m
p
a
r
i
-

s
o
n
 
g
r
o
u
p
 
h
a
v
e

s
u
p
e
r
i
o
r
 
p
r
e
t
e
s
t

s
c
o
r
e
s
?

-
N
o

Y
e
s

G
e
n
e
r
a
l

R
e
g
r
e
s
s
i
o
n

M
o
d
e
l

o
d
e
l
 
5

F
i
g
u
r
e
 
7
,

D
e
c
i
s
i
o
n
 
T
r
e
e
 
f
o
r
 
S
e
l
e
c
t
i
n
g
 
E
v
a
l
u
a
t
i
o
n
 
M
o
d
e
l
s

N
o
r
m

R
e
f
e
r
e
n
c
e
d

M
o
d
e
l



4.

41

algorithm are extremely abstract; consequently, the algorithm is used
after the student has acquired the concepts in the seven boxes. This

algorithm would not be appropriate in a self-instructional setting.

Algorithms as Aids to the Instructional Designer

In addition to the uses we have previously described, it appears
that algorithms may also be used to aid instructional designers. We

base this hypothesis on the observation that, in many instances, algo-
rithmic procedures and instructional design procedures seem to be closely

related. Some of these relationships are discussed in greater detail be-

low.

Algorithms and objectives. Given an algorithm which has been deve-
loped with'some nontechnically stated instructional goal in mind, it is
very easy to derive a correct, technically stated, and easily communicated
specific terminal objective from it. Let us assume that an instrucional
objective always has these three elements:, conditions, performance,

standards. The domain Of an algorithm is essentially equivalent to the
conditions and the range of an algorithm is essentially equivalent to the

performance, Thus, with a few minor changes and the addition of some
standards, a statement of the domain and range of an algorithm can be
transformed into a behavioral objective. For example, consider the algo-

rithm for adding fractions (Figure 8). By adding the word "given" to
the statement of the domain of the algorithm,we obtain the conditiOns
portion of our outcome:

"Given any set of two fractions with whole number denomi-

nators . . .",
,

A slight alteration of the statement of the range of the algorithm pro-

vides us with the performance portion of our outcome:

D
. . the student will compute the sum of the set . . ."

By adding a statement of standards (such as "correctly"), we have a
clear and concise behavioral objective:

"Given any set of two fractions with whole number denomi-
nators, the student will compute the sum of the set correctly."

The relationship between algorithms or algorithmic formUlations and
objectives is, of course, based on the fact that both represent descrip-

tions of terminal behavior. IdeallN,algorithms are explicit unambiguous
descriptions or prescriptions, while objectives are summarized descrip-
tions which, ideally, are also unambiguous. The interdependence of
algorithms and objectives is unexplored territory which may yield inter-
esting research problems.

Entry skills and learning hierarchies. An explicitly formulated
algorithm makes it possible to "read off" required entry skills with a
degree of precision and thoroughness not available with other procedures.
Since many algorithms include subroutines and/or represent subroutines

4



42

Domain: Any-set of two fractions with whole number denominators
Range: Sum of any set of the domain
Entry skill: Factoring of natural numbers

Example: 3

3

_2,

48

9 + 32

48

41
16

; (Path: abcHIA B)

a: Identical denominators?

0
Yes No

1): Is one denomi-
nator a multiple
of the other?

Yes No

: Factor larger denomi-
nator into two factors
with smaller denomi-
nator as one factor.

Multiply the numera-
tor and ,denominator

of the other fraction
by this factor.

c: Are the denomi-

nators multiples
of a common factor
other than 1?

Yes

f: Form the common denomi-
nator by multiplying
the common factor by-
the two unique factors.

G: Multiply each numera-
tor by unique factor
of the denominator of
the other fraction.

: Add numerators.

Write sum over com-
mon denominator.

H: Form common denomi-
nator by multiplying
the two individual
denominators.

I: Multiply each nume-
rator by denominator
of other fraction.

Figure 8. Algorithm for Adding Fractions (Version 1)



43

themselves for higher order algorithms, it is also possible to determine
learning hierarchies by placing the derived entry skills (subroutines)
into an order which shows the dependent and independent relationships
among them. Both the determination of entry skills and the determination
of a learning hierarchy are demonstrated below.

Given the algorithm for adding fractions (Figure 8), a designer can
infer those concepts and skills which must be part of the learner's re-
pertory if he is to be able to execute this particular algorithm:

Concept hierarchy: Skill hierarchy:

fraction factoring whole Timbers

numerator multiplying whole numbers

denominator adding whole numbers

multiple

factor

The list of skills is ordered by skill levels. Factoring is clearly

the highest level skill and requires skills in multiplication as a prere-
quisite while multiplication requires addition skills as .a prerequisite.
However, this ordering does not imply that the skills listed below the

highest level skill represent a complete list of all prerequisites for

the highest level skill.

Such a list or hierarchy can now be developed by writing an algo-
rithm for the highest level skill (in this case "factoring whole num-

bers"). This algorithm again yields an ordered list of prerequisite
skills, for each of which an algorithm may need to be written. Thus, we

arrive at a hierarchical ordeer of algorithms, each accompanied by an
ordered list of prerequisite skills. In order to avoid the problem of

an infinite regress, the designer, at some point, must decide that some

particulaf skill must be part of the learner's repertoire. Until that

particular point is identified, any skill in a "higher" list must event-
ually show upina"lower" list or if it does not eventually show up'as one

of the subalgorithms, a branch in the hierarchy is indicated and a
separate algorithmic analysis of these skills muse be performed.

,The final outcome is a very precise hierarchy of algorithms or of
learning tasks which should include very little if any subjective deve-

loper bias. Parallel with the development of the skills hierarchy is

the development of a vocabulary or concept list. This list is also

ordered, inasmuch as any given new concept requires othet prior concepts

for its definition and explanation. The list of concepts for a given

set of algorithms, therefore, represents a second hierarchical network

which is assumed to be complementary to the network of skills. The two

48



44

hierarchical methods together represent a very complete basis for making
decisions on sequencing the components in the ultimate instructional
product.

Two things should be pointed out which bear on the applicability of
the scheme outlined above. First of all, the range of applicability is
limited to subject matter areas or topics within subject matter areas
which are amenable to algorithmization, i.e.,;./hich have sets of inter-
dependent rules or procedures as content. For example, most of the sub-
ject matter in history is not amenable to algorithmization because the
content does not generally consist of interdependent rules or procedures.
It may be possible to identify isolated bits and pieces of algorithmic
subject matter in history and thus benefit in some small measure from
making these algorithms explicit, but sequencing decisions on a larger
scale will have to be made on the basis of criteria other than hierar-
chies developed by algorithmic analysis. Secondly, in the literature we
find very little empirical validation and very little in-depth comparison
with other similar approaches, such as the one demonstrated by Ehrenpreis
and Scandura (1972), which deals with the relationships of rules and
higher order rules that could be utilized in the construction of a mathe-
matics curriculum. It is not entirely clear on what basis the authors
call their approach "algorithmic," but it is clear from their data that
an in-depth analysis of logical relationships exiting within a subject
matter domain can lead to the elimination of a great deal of redundancy
and thus to greater instructional efficiency.

Scandura (1971) identified "several hundred" rules for several
.hundred tasks in a mathematics curriculum. An analysis of these rules
showed that many of the lower order rules could be subsumed by 12 higher
order rules, thereby cutting the total number of rules by approximately
50 percent. A comparison of two groups, one of which had learned the
original set of rules and the other the reduced set of rules, showed es-
sentially that ". . . the higher order rules group was taught less but
learned more." This result leads us to wonder whether algorithmic anal-
ysis may lead to similar gains in instructional economy in other fields.
Algorithmic analysis is somewhat broader and more inclusive than
Scandura's approach, since it includes the parallel development of a con-
cept hierarchy. It may, therefore, be an even more effective overall
approach--a hypothesis that should be put to the empirical test.

Prompting. Prompting is a technique which instructional' designers
use frequently; so is the gradual withdrawal, or fading, of prompts.
Algorithms are highly amenable to the gradual withdrawal of a prompt.
Take fOr example the fraction adding algorithm (See page 42): after
the pupil has added several pairs of addends correctly, one or another
of the discriminators or operators can be covered or removed and the
pupil continues summing pairs of fractions. This process is repeated
until-the pupil can find the sum of a pair of fractions without referring
to the flow chart or any part of it. Remember: it is the semantic, not
the syntactic, elements of the algorithm which are gradually withdrawn
or faded. The complete algorithm, we trust, becomes a part of the pup-
il's cognitive structure; stored in hit., long-term memory, it can be used
whenever the need arises.

49



45

Figure 9.provides an illustration of the technique. The problem is

to construct a magic square--one in which the sums of all columns, all

rows; and all diagonals are identical; thus:

4

9 5 1

2 7 6

= 15

= 15

= 15

ti)
=15 .=15 =15 ds

Try the algorithm, starting with any whole number except 3. Then try

the abbreviated version, Figure 10, from' which many of the prompts have

been withdrawn. Next, try Figure 11, which is even more "faded" than

the previous version. Finally, it is entirely conceivablethat you can

now construct a magic square without reference to any of the three

figures. (Again -- remember that the representation of the algorithm has

been faded, not the algorithm itself. YOu probably still use the algo-

rithm, which has now been stored in your memory, to solve the problem.)

Individualized instruction. Since nearly every task can be accom-

plished in more than one way, it is usually possible to develop more
than one algorithm for one and the same task. Two algorithms which are

applicable to the same kinds of problems and yield the same results are

called equivalent. Equivalent algorithms have the same range and domain,

but different operators and discriminators and, therefore, generally re-

quire different entry skills. One and the same behavioral objective may

thus be taught using one of several equivalent algorithms, depending on

a student's entry skills. The Euclidean algorithm for finding the great-

est common divisor of, any two whole numbers, is a good case in point.

Version 1 (Figure12) requires the ability to factor whole numbers, Ver-

sion 2 (Figure 13) requires subtraction of Whole numbers, and Version 3

(Figure 14) requires the division of whole numbers as prerequisites.

It follows that the same objective may be reached by at least three

different instructional routes. This provides opportunities for indivi-

dualization tha) go far beyond flexibility in time allotments and

remedial adjustments. For example, much of a mathematics curriculum

could be taught by means of a number of entirely different paths, each

of which would lead to the same set of terminal' objectives.

It should be noted that differences in learner traits as well as

differences in specific entry skills may be accommodated by an appropri-

ate choice of the algorithm to be taught. A learner may, for example,

possess all of the entry skills required for any one of the three ver-

sions of the Eu6lidean Algorithm. In this instance the choice could be

made on the basis of such learner traits as IQ or learning style. In

any case, algorithmic analysis can open up a wider range of true choices

for the optimal adaptation of instruction to the learner.

u



Domain:

Range:

Entry

46

Nine different whole numbers > 1; a square of nine empty
cells.

A 3x3 array of numbers whose column sums, row sums, and
diagonal sums are identical.
Ability to follow written directions involving left, right,
up, and down; ability to count by ones in whole numbers.*

Put the first number of the
sequence into the middle
square of the top, row

Think of the next higher number.

4f
Id it the last one needed to
complete the square?

Yes I No
.

Put it into the Is the square dia-
last remaining gonally to the right
square: bottom and up available?
row, middle and
STOP.

Yes

Put the number
intothe avail-
We square.

...111

Did you put the
previous number
into the top row?

Yes I No

Is the square in the Did you put the pre-,
.0 bottom row, one column vious number into the

to the right
vious number

Yes

Put the number
into the avail-
able square.

of the pre-
available?

rightmost column?

No Yes

1
Put the number
in the square
below the pre
vious1 olumber.

Yes

Is the square in
the leftmost column
of the row above
the previous num-
ber available?

Put the number into
the available square.

1 No

a

,"

Put the number in the
square below the pre-
vious number.

Figure 9. Algorithm for Producing a 3x3 Magic Square

*It is interesting to note that this algorithm does not require the user
to add or subtract.

15



I

IS

P1 Si 47

55

Place first number

Next number

Last one?

Yes

Place

STOP.

Yes

Fill in.

Yea

V

tt

Diagonal?

Yes

Bottom row
one right?'

. No

4i-
Top row?

No

Right
column?

/ Yes

Left
coluMit

one up?

Put
below.

Yes

41'

Fiil in.

No

No

Put
below.

FigurelO. Abbreviated Flow Chart

kMagic Square)

A



411

First number

Next number

Last?

STOP

a

Diagonal

NNNNA
Top row?

Nss

Figure 11./ A Reminder

(Magic Square)

r0

Y

Right
column?



49

Domain: Any set of two natural numbers
Range: The greatest common divisor for any set of the domain
Entry skill: Factor natural numbers

Example: Find GCD for 144 and 32. 144 = 1 x2x2x2x2x3x3
32 =1x2 X 2x2x2x2

lx2x2x2x2 = 16

A: Convert both numbers
into products of
prime factors

I

B4 Find the smallest
factor of the first
product

. 1
A: Is that samefactor

among the factors of
the secqnd product?

C: Mark it .down

D: Strikeone occur-
` rencn of this factor

from each product

"---

E: Strike this factor
from the first product

bf Is there a factor
left in the first
product?

F: The pro uct of all
factors you have
marked down is the
greatest common
divisor.

Figure 12. Euclidean Algorithm (Version 1)

5



50'

Domain: Any set of two natural numbers
Range: The greatest common divisor for
Entry skill: Subtract natural numbers

Example: Find GCD for 144 and 32: 144

112

80

START

48
37

any set of the domain

- 32

32

32

- 32
- 16

=
=
=
=
=

112

80
48

16

16

21,

a: Is the first number
smeller than the
second number?

A: Subtract the first
number from the
second and regard
the result hereafter
as the second number

b: Are the two
numbers equal?

C: Either of the two
numbers is the
desired greatest
common divisor

B: Subtract the second
number from the first
and regard the result
hereafter as the
first number

Figure 13. Euclidean Algorithm (Version 2)



51

Domain: Any set of twp natural numbers
Range: The greatest common divisor for any set of the domain
Entry skill: Divide whole numbers

Example: Find GCD for I44 and 32: 4

32j7-44

128

16 remainder

2

16) 32
32

0 remainder

GCD = 16

A: Divide the smaller
number into the larger
and find the whole
number remainder

a: Is the remainder 0?

4,
B: The last divisor

is the greatest
common divisor

tr-

49
C: Let the remainder be

the smaller number
and the divisor be
the larger number

Figure 14, Euclidean Algorithm (Version 3)

5 6



VII. Research and Development Problems

Nearly every suggestion for the use of algorithms discussed in the
preceding sections is based on logical or philoiophical considerations.
There is little basis for any empirical pronouncements because the liter-
ature is almost completely devoid of reports'of experiments in which
algorithms are an independent variable. In this section, a number of
questions are raised which provide a point of departure for the formula-
tion of researchable hypotheses in which algorithms are the independent
variable. First, general questions are discussed; then questions which
are particularly relevant to flying training are considered.

Algorithms for Learning and Teaching

It is obvious that some learning tasks and some teaching procedures
are much more amenable to algorithmization than others. For example,
one can safely assert, without Empirical evidence, that it is a fairly
straightforward matter to construct an algorithm for the identification
of families of the order neuroptera, but that it is fairly difficult to
construct one which can be used to identify certain personality traits
on the basis of subjects' handwriting samples. The important question
at this time is not so much one of ascertaining for which learning or
teaching tasks an algorithm can be constructed; this can be determined
rather simply by attempting to construct an algorithm or a set of algo-
rithms. What is of concern at,this time is whether or not a given set
of algorithms facilitates learning or teaching. If 89.gorithms are faci-

litative, is it possible to begin defining classes of problems for whose
solution algorithms are an efficient and/or effective aid?

Perhaps the most difficult, but also a potentially extremely re-
warding effort lies in the area of search algorithms. As we mentioned

in Section V, a search algorithm is essentially an algorithm which
enables the user to discover or formulate additional algorithms. Theore-

tically, it should be possible to construct search algorithms. The lite-

rature, however, provides no examples of research endeavors along this
line.' What are the precise characteristics of search algorithms? How

are they generated? What applicability do they have? These and similar
questions are among the most significant which we have been able to iden-
tify in our research thus far.

The following is a representative, not exhaustive, list of addi-
tional questions to which research efforts might be addressed:

1. Can an algorithm increase a learner's ability to generalize?
If so, can the ability to generalize be facilitated by the use
of algorithms when the focus of the learning task is the gen-
eralization of the structure? when the focus of the learning
task is the generalization of the substantive elements?

2. Does a learner who discovers an algorithm perform better than
a learner who is given an algorithm?

5f



54

3. that is the applicability of algorithms to the acquisition of
various types of rule-governed behavior (see Eubanks, 1976)?

4. Will differences in the representational form of a given algo-
rithm produce differential effects?

5. What steps does a subject matter expert follow in constructing
an algorithm?

Algorithms in Flying Training

There are many academic'areas in the Undergraduate Pilot Training
Curriculum. Examples of these academic areas include such topics as
'aerospace physiology, aircraft accident prevention, instruments, naviga-
tion, applied aerodynamics, and many others. Research addressed to the
role of algorithms in learning and teaching such academic topics is
covered in the immediately preceding paragraphs. On the other hand,
flying training (particularly such areas as procedures, instruments, and
navigation, in both simulators and aircraft) presents a set of problems
quite different from any discussed heretofore.

One of the reasons why flying training presents a different set of
problems is related to how one develops an algorithm for learning a re-
sponse which cannot be unambiguously described by any verbal means. For
example, we have frequently referred to the set of seven verbal cues
which aid a student pilot to master the Vertical S-A. If we wished to
algorithmize these cues, we would immediately be confronted with the
problem of representing the first,operator, "apply power at a smooth,
slow, and steady rate." The verbal representation, either textual or
oral, appears to be insufficient to control the learner's behavior within
very precise criterion limits (Brecke, Gerlach, and Shipley, 1974).
Thus, it seems unlikely that an algorithm can be constructed which would
depend, wholly or partly, on such a verbal representation because resul-
tivity would be lacking. The verbal cue permits too much response vari-
ability to insure an acceptable execution of the maneuver. Obviously
research is needed which may yield a solution to this kind of problem.

Quasi - algorithmic prescriptions and quasi-algorithms. Landa (1966)
uses the term quasi-algorithmic prescriptions to designate procedures
which are not algorithms in the strict mathematical sense.. He distin-
guishes quasi-algorithmic prescriptions from algorithms proper in this
manner:

(1) The criteria of replicability, generality and resul-
tivity are only approximately fulfilled by quasi-
algorithmic prescriptions.

(2). It is generally not possible to unambiguously delimit
the domain for quasi-algorithmic prescriptions.

(3) It may not be possible to specify a finite number of
operations for quasi-algorithmic prescriptic-s.

t5 E



(,

55

It appears that it would be difficult to identify quasi-algorithmic
prescriptions on the basis of the distinguishing characteristics de-
scribed above. Indeed, Landa himself emphasizes that the notion of a
quasi-algorithmic prescription is less precise than the notion of an
algorithm. However, Landa does discusss a characteristic of algorithms
which, although he apparently did not intend it to be used for such pur-
poses, can help in the identification of quasi-algorithmic prescriptions.
Landa states that an algorithm is sufficiently elementary if,'and only
if, the discriminators and operators are unambiguous. Operationally,
this translates into the statement that a given user -(or class of users)
must be able to make the discriminations and,perform the operations
specified in the algorithm. This leads to the logical conclusion that
the elementarity of an algorithm is. dependent on the user. If the user
is a machine, the problem of determining whether or not the algorithm 'is
sufficiently elementary is relatively simple; indeed, there should be no
reason why this elementarity, or lack of it, cannot be specified a priori.
In the areas of education and psychology, the problem is quite different.
Human users are less predictable than machines. Indeed, the behavior of
humans is so unpredictable that frequently the elementarity of an algo-
rithm must be determined pragmatically; it cannot be determined a priori.
Add to this the fact that Landa is concerned not only with the upper
limits of elementarity, but also wi.th the lower (i.e., whether or not the
algorithm is too elementary), and the problem becomes even more complex.
Thus, Landa's concept of sufficient elementarity seems to lead to such
frustrating complexity that one might be led to conclude that algorithms
have little or no applicability to flying training.

Bung (1971), however, suggests a solution which deserves careful
attention. He has attempted to deal with the subjectivity problem which
elementarity poses by introducing the conrept of quasi-algorithm:

Quasi-algorithms are procedures which are explicit for, and
can be carried out by, a specified set of human beings; algo-
rithms are procedures which are explicit for, and can be
carried out by automata. Since all procedures which can be
carried out by automata can also be carried out by human
beings but not vice versa, it follows that all algorithms are
quasi-algorithms but not all quasi-algorithms are algorithms.
The set of all algorithms is therefore a subset of the set of
all quasi-algorithms. (p. 3)

This definition permits the inclusion of machine algorithms in the class
of quasi-algorithms. From an instructional design and development point
of view, nothing is gained from Bung's distinction. However, if we
modify Bung's scheme for classifying algorithms and quasi-algorithms, we
arrive at a very practical distinction. Let us point out that Bung's
discussion of a user's ability to carry out an algorithm or quasi-
algorithm is similar to Landa's discussion of the sufficient elementarity
of algorithms. Keeping this fact in mind, let us divide all algorithms
into two classes, those for which the attribute sufficient elementarity
can be specified a priori and those for which it cannot. The former are

"true" algorithms; the latter we shall call "quasi-algorithms."

5:9



56

Thus, it is a simple matter of logic to extend the concepts of Landa
and Bung to a precise and practical (i.e., applicable to instructional
design) definition: a quasi-algorithm is one for which the attribute
sufficient elementarity must be determined pragmatically. This extension
of the theory of algorithms is of particular significance to such areas

as flying training. Many of the responses which a student pilot must
learn are continuous control actions. It seems highly unlikely, given
the present state of the art, that true algorithms for any of the lear-
ning or instructional problems can be formulated; at least, it does not
seem practical to attempt to do so at this time. However, quasi-
alsorithms may provide an effective means of suriounting the difficulties
imposed by the restrictive nature of true algorithms. The application of
quasi-algorithms to such tasks as learning an instrument maneuver isa
legitimate research and development effort.

Variables in algorithms. The question of whether or
rithm is sufficiently elementary can be investigated on a
semantic or a pragmatic level.

(1) Syntactic variables. We have said earlier that
ture of an algorithm represents its syntax. For example,
aspects of the Euclidean algorithm (page 49) are shown in
Another representation of the syntax of this algorithm is
set of symbols:

ABa2CDb3B3 F. 2Eb4B4 F.

not an algo-
syntactic or a

the macrostruc-
the syntactical
Figure 15.
the following

These symbols have no specific intrinsic or endemic meaning. They are

not fixed to any particular subject matter (or algorithm) and could re-
present such diverse referents as the syntactical aspects of a procedure
for operating a machine or for ascertaining whether or not a specific
rule of grammar Is applicable. It appears perfectly reasonable to cate-
gorize algorithms according to various syntactical features. Linear

algorithms without discriminators are quite different from branching
algorithms with operators only at the exit points; both differ from an
algorithm with recursive loops or from an algorithm without recursive
loops.

The syntax of algorithms provides a mechanism or a procedure for
the quantification of certain features, such as the number of operators,

discriminators, exit points, and recursive loops. These variables, as

well as the structural variations mentioned above, are certainly impor-
tant determinants of general and individual learners' behavior potential
with respect to replicable procedure. It is quite logical to assume that
syntactical complexity of an algorithm and ability factors such as IQ are

directly related. An algorithm with the elementary structure:

0

0

may well be "elementary" for pupils in grade'one or higher. However, an

algorithm with a more complicated structure (for example, the Euclidean

GU



F.

Figure 15. The Syntactical Structure of the

Euclidean Algorithm (Version 1)

61



58

Algorithm) may not be elementary for the same pupils. Version 1 of the
Euclidean Algorithm contains six operators, two discriminators and one
recursive loop. The Shipley version of the Euclidean Algorithm (Figure 14
has three operators, one discriminator and one recursive loop. Syntacti-
cally speaking, the Shipley version is much simpler than the original,
and may be more suited.for students of lower ability. Syntactical vari-
ables may, therefore, be among the critical factors in determining when
learners can be introduced to any particular replicable procedure.

(2) Semantic variables. When 'we speak of the semantic asjects of an
algorithm,'we refer to the meaning of the verbal elements associated with
the symbols of the syntactical, skeleton. Weaver (1949), in his preface
to Shannon's basic treatise on information theory, expressed it thus:
"How precisely do the transmitted symbols covey the desired meaning?"
(p. 24). Landa refers to this aspect as content (as opposed to, form).
The syntactic' and the semantic components of an algorithm may be
separated fot the purpose of illustration as well as for practical con-
siderations. Bung's Bird algorithm (see p. 24) illustrates this division.

To ask whether or not a procedure is replicable in semantic terms
means basically: Can a specified user understand what he is to de? Will

' every user of the specified class of users understand the meaning of each
element? Will every user interpret any given element in the same way?
To put it another way: Are the formal characteristics of these semantic
units elementary for an identifiable class of users? Landa (1974) answers
this question affirmatively and gives the following example: The truth
value of ,the sentence, "He got Of the train in Tashkent and went immedi-
ately to his Moscow apartment," can be recognized as false by anyone
who has a normal command of language and the geography of the Soviet"
Union. It involves the basic semantic axiom that no object can be in two
places at the same time. The example is, of course, designed to prove a
point, but it may not be possible to reduce every sentence in a procedure
to an axiomatic kernel of truth. Therefore, it will be necessary to de-
sign other means of analyzing, the semantic content of a procedure. One
way to accomplish this purpose would be to decompose sentences into Lom-
ponent concepts or into the component skills implied. The operator "A"
in the Euclidean Algorithm (p.49), for example, is crucial since it could
be assumed that any user for which this operator would be elementary
would surely have no difficulties with the remaining operators or dis-
criminators.

(3) Pragmatic variables. Given an algorithm which is semantically
adequate we are still faced with the problem of determining a "suffi-
ciently elementary" operation from a pragmatic standpoint. Can the user
execute the operations and discriminations specified? Can he do what he
is supposed to do? Can all users do it equally well, or with the same
speed, force, precision? If a procedure specifies, "Advance throttle
smodthly," how wide is the range of possible behaviors resulting from

9
Roughly equivalent do getting off a train in Chicago and going

immediately to one's San Francisco apartment.

6 1



59

this cue For apprentice surgeons, the removal of an appendix may very
well be an algorithmic procedure in all but the pragmatic aspects of the

operation. Not every apprentice may have the combination of sensitivity

and dexterity required to cut through the abdominal wall. It may be com-

pletely clear to a user what it means to factor a number; he may under-

- stand perfe6tly what he is supposed to .do, but he may not be able to do

it correctly. A person or a machine may not be able to make the required
discriminations, as for example, a color-blind person who is directed to

react differently to different colors.. A musical score for the tuba may
be algorithmic for a grown man, but a seven-year old boy may be physically
unable to handle the instrument, even though he knoxfs exactly what he is

supposed to do. The pragmatic aspect, then, requires that an algorithm
be operationally definable; this means that it must be demonstrable that

,a specified class of users can execute the algorithm in such a manner

that an accetpable outcome results.

Whether or not the parts of a procedure are sufficiently elementary
requires an examination of three clearly identifiable aspects. The cri-

terion of sufficient elementariness is satisfied for a specified class of
users if these users possess the prerequisite skills to unequivocally

perform the syntactic, semantic,and pragmatic discriminations and opera-
tions that are called for by the element or iet of elements. If the

users fall short in their skills (i.e., if there is a deficit of user
skills with respect to requirements of the procedure), then the distinc-
tions made above provide the taxonomical and conceptual tools for pin-

pointing the exact nature of the deficit. The potential of any measure'

for remedying the deficit by either changing the procedure or upgrading
user skills is, therefore, increased, since the problem is more precisely

defined.

These three variables offer a rubric under which specific research

.projects can be designed. Let us return to the problem of continuous
control responses lo illustrate further the applicability of this rubric.

Non- textual algorithms. Earlier we stated that the procedure for
executing the vertical S-A described on p.3 in this paper was not an

algorithm. Let us examine the syntactic, semantic, and pragmatic aspects
of this procedure to determine why this is so. Certainly the syntactic

aspects of the procedure are sufficiently elementary for the intended

class of users (student pilots). However, looking at the first cue in

this procedure, we can see the semantic aspects of the procedure, as well

as the' pragmatic aspects, are not sufficiently elementary. The first cue

requires the student pilot to move the throttle smoothly, slowly, and

steadily. The semantic and pragmatic aspects of this prescription are
not sufficiently elementary, since not all learners will interpret and

respond to this cue in the same manner. There seems little else that can

be done. How do you state unambiguously, in a few words, what kind of

throttle movement is desired?

But algorithms need not be restricted to verbal (in this case,
textual) riemantic elements. 'Incongruous as it may sound, the semantic

elements of an algorithm may be pictorial. Recall the algorithm for

identifying the family to which an insect of the order neuroptera



60

belongs (p. 30): since it would be virtually impossible to describe all
the defining characteristics textually, the algorithm includes pictures.

.Carry this a stei, farther. Assume for the sake of discussion that
a student pilot who can learn to distinguish betWeen examples and non-
examples of a "smooth, slow, and steady" throttle movement.will be able
to produce such a movement. The simulatot is programmed in such a man-
ner that the student pilot can put his hand on a moving throttle and
"feel" what smooth, slow, and steady is as his hand moves along with the

thrOttle. In effect,, an algorithm might be constructed which would in-
clude, as one of its semantic aspects, a discriminator based on this kind
of stimulus.

The application of algorithms to flying training could be very pro-
ductive if methods of representing the "semantic" aspect's can bedeve-

loped. This kind of activity is a potentially high-yield endeavor.
Many aspects of flying demand responses to sgch stimuli as curves, moving
objects, and other similar types of analog information. Ultihately, the
kind of.research activity suggested should lead to better methods of
dealing with analog information--a very critical aspect of learning to

The concept algorithm represents a potentially powerful variable

for learning and teaching. As we learn more and more about algorithms,
prescriptions for the instructional systems designer should begin to

emerge. At present, the problem is not so much one of finding a research-
able problem under the rubric algorithm as it is selecting the best of
many candidates for the first mission.

6

O



EPILOGUE

T1-..re is, of course, the possibility that algorithms are "no damn
gapd." Conceivably, research might demonstrate that they do not facili-
-rata-learning, -teaching, or instructional design. What then?

We have an algorithm to cover that eventuality, too (Snoopy, 1975).
"Go back to Section I. Reread the story of Houdini. Then try magic."



References

Bellman, R., Cooke, K. L., and Lockett, J. A. Algorithms, graphs and
computers. New York: Academic Press, 1970.

Brecke, F. H., Gerlach, V. S./ and Shipley, B. D. Effects of instruc-
tional cues on complex skill learning. (Technical Report No. 40829,
Project No. AFOSR 71-2328) Arlington, VA: U. S. Air Force Iffice of

Scientific Research, 1974.

Bung, Klaus. A simplified notation forljapunov algorithms and their
meta-algorithm. Unpublished mimeographed paper, 1969.

Bung, Klaus. A cybernetic approach to programmed language instruction.
Educational media international, 1971, 4, 1-8.

Bussmann, H. Zur Kybernetik des Lernprozesses. Duesseldorf: Paedago-
gischer Verlag Schwann, 1971.

Davies, I. K. "Selecting an appropriate strategy for communication com-
plex rules, procedures and instructions." The Management_of Learning,
Ch. 9. New York: McGraw-Hill, 1971.

Doctorow, E. L. Ragtime. New York: Random House, 1975.

Ehrenpreis, W., and Scandura, J. M. An algorithmic approach to curricu-
lum construction in mathematics: A field test. Structural learning
series, Report 64. Philadelphia: University of Pennsylvania, March
1972.

Eubanks, J. Rule learning and the design of systematic training. (Tech-

nical Report No. 60115, Project No. AFOSR 75-2900) Bolling AFB, DC:
U. S. Office of Scientific Research, 1976.

Frank, W. Ueber die Kalkuelisierbarkeit der didaktischen Variablen von
Paul Heimann. In: Northemann, W., and Otto, G. (Eds.), Geplante
Information.: Weinheim: Verlag Julius Beltz, 1969.

Glushkow, V. M. Theorie'der abstrakten Automaten: (G. Asser, Ed., and
trans., K. Straehmel, .trans.) Berlin: Deutscher Verlag der

I

Wissen-
schaften, 1963. !

Borabin, I., and Lewis, B. Algoriehhis. Charles Town, WV: Ivan,Horabin,

1974.

Horst, D. P., Talmadge, G.
measuring project impact
S. Department of Health,
Education, 1975.

practical guide to
Washington, DC: U.

National Institutenf

K., and Wood, C. T. A
on student achievement.
Education and Velfare,

memorizing. New York:Katona, G. Organizing and
Press, 1940.

GdG

Columbia University



64

Knuth, D. 4. The art of Computer programming, Vol. 1, Fundamental algo-
rithms. Reading, MA: .Addison-gesley, 19'68.

Landa, L. N. Algorithmization in learning and instruction. Englewood
Cliffs, NJ: Educational Technology Publications, 1974.

Lansky; M. Learning algorithms as a teaching aid. RECALL: Review of
educational cybernetics and applied linguistics, 1969, 1, 81-89.

Lyapunov, A. A. The logical structure of programmes.
Lyapunov (ed.): Problems of cybernetics 1. Oxford:
1960.

,Markov, A. A. Theory of algorithms. Washington, DC:
Foundation, 1961.

In: A. A.
Pergamon Press,

National Science

Scandura, J. M. Deterministic theorizing in Structural learning: Three
,levels of empiricism. Journal of structural learning, 1971, 3 (1),
21-53,

Wrakhtenbrodt, B. A.% Algorithms and automatic computi machines.
_Lexington,. MA: D. CBeath, 1965.

Weaver, W. Recent contributions to the mathematiCal theory of communica-
tion. In: Shannon, C. E., and Weaver, W. The mathematical theory of
communication. Urbana, IL: The University of Illinois Press, 1948.

44.



APPENDIX A

A SHOWEISTORY OF ALGORITHMS

Manhind has used algorithms or algorithmic like prescriptions for
at least as long as it has engaged in such sociological phenomena as the
division of'labor or the establishment of laws, rules and procedures.
In the context of social control the concept of an algorithm is under-
stood as a general procedure for the solution of a specific class of
problems.

Forioal algorithms probably appeared first in the field of,mathema-
tics, The prime example is the Euclidean Algorithm. Another example
from antiquity is Aristotle's (384-322 B.C.) Syllosistics in which he
set forth a system of rules dealing. ith certain forms of logical con-
clusions. More general applications of algorithms as universal computa-
tion procedures in mathematics did not appear until the Middle Ages.

Our current decimal -system originated in India and was adapted by
the Arabs around the mi-dle of the 7th Century. In one of his works on
mathematical and astronomical problems, Muhammad Ibn Musa A1- Hwarizmi
(ca. 825,A.D.)-explains the Indian -(.ter Arabic) number system as -well as.
computational procedures within this system. The original manuscript is
lost, but according to one theory the algorithm was taken directly from
the title of the Latin translation: "Algorithmi de numeri Indorum . . ."

Another theory suggests that the word was derived from the name of the
author, Al Hwarizmi.

The algebraic methods introduced by Arabian mathematicians greatly
influenced Arymondo Lullus (ca. 1300 A.D.). Lullus was the author of
Ars Magna, which he considered to be a general procedure for discovering
all truths. The procedures or methods vlich he actually supplies are of
little or no practical value. His genius lies in the conception of the
idea of a general vIPthdd which exerted a very strong influence on fol-
lowing generations of mathematicians. For example, Cardano, more than

. 200 years later, still conceivedof algebra as "the art of Lullus."
Evidence to this effect is found, among other sources, in his Artis Magna
Seu de Regulis Algebraicis (1545), in which he published algebraic algo-
rithms, including the algorithm for the solution of tertiary equations
which was named after him.

During the 16th century most writers in the field of algebra appar-
ently believed that all algebraic problems could be treated algorithmi-
cally. This was not the case with geometry, the only other branch of
mathematical science then in existence. Descartes (1596-1650), the
father of analytical geometry, attempted to develop a method of trans-
lating all problems of geometry into algebraic form(s), thus rendering
them amenable to solution by means of algebraic algorithms. In his view,
all, algebraic problems could be solved by applying one or more algo
rithms; consequently, he concluded that there were no interesting prob-
lems remaining-for a creative mathematician. Considering the state of
the at at this time, this was a pardonable error. Almost three hundred
years passed before it was possible to delimit the range of mathematical
problems that could be solved algorithmically.

68



66

The concept of an Ars Magna led Leibniz (1646-1716) to attempt to
develop algorithms which were ag general as possible. Leibniz empha-
sized that his deliberations were based on Lullus and that the concept
of an Ars Magna actually encompassed two component concepts, namely that
of an ars judicandi (decision procedures) and that of an ars inveniendi
(production procedures). He also pointed out that a truly algorithmic
procedure must be exeutable by a machine, a mechanism. He was far
ahead of his time in that he was describing, in a primitive way, an in-
formation processing machine which, of course, is one of the basic con-

.

cepts of modern cybernetics.

Following Leibniz, little or no effort was made to develop the con-
cepts of Ars Magna because of a lack of suitable methodologies for
mathematicalformulation and interpretation. Not until the 19th Century
where De Morgan, Boole, and Schroeder began to develop such methods in
the field of logic, did this situation begin to change.

The desire forte an exact algorithmic basis for mathematics, which
evolved from set theory, led to new directions in the formalization of
logic as well as mathematics. These investigations, which dispensed
with a close analogy to algebra, were begun by Frege and Peano and they
culminated in Whitehead's and Russell's monumental work. Principia Mathe-
matica (1901-1908), in which it was demonstrated that much:of logic and
mathematics could be represented in the form of a "calculus" (a forma-
lized language or formalized theory). Finally, the work of D. Hilbert
and hi students as well as that of the Polish.School of Logicians, who
in therly 1900's contributed fundamental works on the development
and structure of formalized theories, deserves mention.

Two essential factors contributed to the adaptation of the algo-

rithmic concept by the behavioral sciences. The first of these was the

advent of modern computer technology. The hardware suggested models
concerned with aspects of the functioning of the human mind; the soft-
ware (i.e., the programs themselves which are algorithms) led to the
more involved, °preciseiand creative activity of artificial intelligence
modeling. The description and modeling of problem solutions and isomor-
phic mental solution processes by means of algorithms offers the poten-
tial of a very high degree of precision in terms of both analysis and

representation. An excellent example of this type of development is
found in the work of Newell and Simon (1972).

The second major contributing factor was the emergence of cyberne-
tic theory, which supplied the theoretical framework as well as the
mathematical apparatus for a synthesis of the two branches of artifical
intelligence modeling. N. Wiener (1948) supplied the fundamental theory
for general cybernetics; Glushkov (1966) contributed major extensions
to automation theory. Among the first writers to apply concepts of
cybernetic theory and of algorithmic theory to educational problems were
Frank (1962; 1969) and Landa (1966). The latter wrote Algorithms in
Learning and Instruction, which is the most significant and seminal work
on the subject to date. The primary objective his model is to train

the learner in systematic methods of thinking; the method for achieving
this objective is the use of algorithms.

Gil



67

The publication of Landa's book in the U. S. in 1974 is part of an
increasingtendency in this country to treat basic issues in learning
and instruction in terms of theoretical constructs which are deduced
from a cognitive-cybernetic model rather than from a purely behavioris-

tic model of psychology. This shift in orientation is accompanied by
the emergence of a new vocabulary, of which "algorithm" is but one word.
The term and the concept, however, are now as much a part of the educa-

tor's vocabulary as are "objectives" or "criterion referenced testing."
Yet, while "objectives" and "criterion referenced testing" are notions
which are very clearly defined and delimited in meaning an usage, "algo-
rithms" still represents a term which is in need of a precise definition.

This report attempts to accomplish just 'hat.

+1111111.11.11kmt

70


